这是我的功能:
def clean_zipcodes(df):
df.ix[df['workCountryCode'].str.contains('USA') & \
df['workZipcode'].astype(str).str.len() > 5, 'workZipcode'] = \
df['workZipcode'].astype(int).floordiv(10000)
df.ix[df['contractCountryCode'].str.contains('USA') & \
df['contractZipcode'].astype(str).str.len() > 5, 'contractZipcode'] = \
df['contractZipcode'].astype(int).floordiv(10000)
return df
这是我期望的测试功能:
def test_clean_zipcodes():
testDf = pandas.DataFrame({'unique_transaction_id' : ['1', '1', '1'],
'workZipcode' : [838431000, 991631000, 99163],
'contractZipcode' : [838431000, 991631000, 99163],
'workCountryCode' : ['USA: STUFF', 'NONE: STUFF', 'USA: STUFF'],
'contractCountryCode' : ['USA: STUFF', 'NONE: STUFF', 'USA: STUFF']})
resultDf = pandas.DataFrame({'unique_transaction_id' : ['1', '1', '1'],
'workZipcode' : [83843, 991631000, 99163],
'contractZipcode' : [83843, 991631000, 99163],
'workCountryCode' : ['USA: STUFF', 'NONE: STUFF', 'USA: STUFF'],
'contractCountryCode' : ['USA: STUFF', 'NONE: STUFF', 'USA: STUFF']})
assert resultDf.equals(clean_zipcodes(testDf))
除了缩进不正确(没有转换为SO格式)之外,df.ix没有按预期执行。它不会对contractZipcode或workZipcode列执行任何转换。如resultDf中所述,第一行应更改为83843。
提前感谢!
答案 0 :(得分:1)
@Bean
public JobService jobService() throws Exception {
SimpleJobServiceFactoryBean factory = new SimpleJobServiceFactoryBean();
return factory.getObject();
}
请注意,当您尝试索引时会返回空切片:
In [2]: import pandas as pd
In [3]: testDf = pd.DataFrame({'unique_transaction_id' : ['1', '1', '1'],
...: 'workZipcode' : [838431000, 991631000, 99163],
...: 'contractZipcode' : [838431000, 991631000, 99163],
...: 'workCountryCode' : ['USA: STUFF', 'NONE: STUFF', 'USA: STUFF'],
...: 'contractCountryCode' : ['USA: STUFF', 'NONE: STUFF', 'USA: STUFF']}
...: )
...:
...: resultDf = pd.DataFrame({'unique_transaction_id' : ['1', '1', '1'],
...: 'workZipcode' : [83843, 991631000, 99163],
...: 'contractZipcode' : [83843, 991631000, 99163],
...: 'workCountryCode' : ['USA: STUFF', 'NONE: STUFF', 'USA: STUFF'],
...: 'contractCountryCode' : ['USA: STUFF', 'NONE: STUFF', 'USA: STUFF']})
...:
...:
...:
如果您在不同的过滤器周围添加括号:
In [4]: testDf.ix[testDf['workCountryCode'].str.contains('USA') &
testDf['workZipcode'].astype(str).str.len() > 5,
'workZipcode']
Out[4]: Series([], Name: workZipcode, dtype: int64)
你得到你想要的东西。如果您使用In [5]: testDf.ix[(testDf['workCountryCode'].str.contains('USA'))
& (testDf['workZipcode'].astype(str).str.len() > 5),
'workZipcode']
Out[5]:
0 838431000
Name: workZipcode, dtype: int64
也无关紧要:
loc
所以这是清理过的功能: 为了便于阅读,我添加了一些小lambda。
In [6]: testDf.loc[testDf['workCountryCode'].str.contains('USA') &
testDf['workZipcode'].astype(str).str.len() > 5,
'workZipcode']
Out[6]: Series([], Name: workZipcode, dtype: int64)