我需要从数据中检测连续减少数量的长度为5的第一个序列的第一个元素。这里有一个类似的post但是当我申请我的数据时,它失败了。
set.seed(201)
az <- c(sort(runif(10,0,0.9),decreasing = T),sort(runif(3,-0.3,0),decreasing = T),sort(runif(3,-0.3,0),decreasing = F),sort(runif(4,-0.3,0),decreasing = T),sort(runif(4,-0.3,0),decreasing = F),sort(runif(6,-0.3,0),decreasing = T))
tz <- seq(1,length(az))
df <- data.frame(tz,az=round(az,2))
在上图中,它将在tz = 25附近。
帖子说这个功能需要改进,到目前为止我无法得到我想要的结果!
getFirstBefore<-function(x,len){
r<-rle(sign(diff(x)))
n<-which(r$lengths>=len & r$values<0)
if(length(n)==0)
return(-1)
1+sum(r$lengths[seq_len(n[1]-1)])
}
df1 <- df%>%
mutate(cns_tz=getFirstBefore(az,5))
tz az cns_tz
#1 1 0.56 4
#2 2 0.55 4
#3 3 0.33 4
#4 4 0.33 4
#5 5 0.26 4
#6 6 0.15 4
#7 7 0.12 4
#8 8 0.09 4
#9 9 0.04 4
#10 10 0.04 4
#11 11 -0.10 4
#12 12 -0.12 4
#13 13 -0.16 4
#14 14 -0.16 4
#15 15 -0.14 4
#16 16 -0.14 4
#17 17 -0.13 4
#18 18 -0.15 4
#19 19 -0.22 4
#20 20 -0.30 4
#21 21 -0.12 4
#22 22 -0.12 4
#23 23 -0.11 4
#24 24 -0.07 4
#25 25 -0.05 4
#26 26 -0.09 4
#27 27 -0.10 4
#28 28 -0.15 4
#29 29 -0.17 4
#30 30 -0.22 4
答案 0 :(得分:6)
我会对每5个连续值进行排序,看看它是否与未排序的数据匹配。然后找到这样一场比赛的第一次出现:
set.seed(123)
test <- rnorm(100)
decr <- sapply(seq_along(test),function(x){all(sort(test[x:(x+5)],decreasing = T) == test[x:(x+5)])})
firstdecr <- min(which(decr)):(min(which(decr))+5)
plot(test)
lines(firstdecr, test[firstdecr], col="red")
只有缺点我才能看到5个值的时代中是否存在相等的值,但你也可以测试它。
答案 1 :(得分:3)
我们可以使用rleid
data.table
library(data.table)
n <- 5
v1 <- setDT(df)[sign(az)<0, .I[which(.N==n)] , rleid(c(1, sign(diff(az))))]$V1[1L]
v1
#[1] 26
df[, cnz_tz := v1]
或另一个选项shift
Reduce
setDT(df)[, cnz_tz := .I[Reduce(`&`, shift((az - shift(az, fill=az[1])) < 0,
0:4, type = "lead", fill=FALSE)) & sign(az) < 0][1]]
我们也可以在rleid
dplyr
library(dplyr)
v1 <- df %>%
group_by(rl= rleid(c(1, sign(diff(az))))) %>%
mutate(rn = sign(az) < 0 & n()==5) %>%
.$rn %>%
which() %>%
head(., 1)
v1
#[1] 26
df %>%
mutate(cnz_tz = v1)
答案 2 :(得分:2)
我天真的纯粹dplyr方法是计算差异符号的滚动总和,并识别下五个差异具有负号的行。我说“天真”,因为此解决方案不使用rle
来检测条纹。
library(dplyr)
diff_details <- df %>%
mutate(diff = c(0, diff(az)),
diff_sign = sign(diff),
rolling_signs = cumsum(diff_sign),
next_five = lead(rolling_signs, 5) - rolling_signs)
diff_details
#> tz az diff diff_sign rolling_signs next_five
#> 1 1 0.56 0.00 0 0 -4
#> 2 2 0.55 -0.01 -1 -1 -4
#> 3 3 0.33 -0.22 -1 -2 -4
#> 4 4 0.33 0.00 0 -2 -5
#> 5 5 0.26 -0.07 -1 -3 -4
#> 6 6 0.15 -0.11 -1 -4 -4
#> 7 7 0.12 -0.03 -1 -5 -4
#> 8 8 0.09 -0.03 -1 -6 -4
#> 9 9 0.04 -0.05 -1 -7 -3
#> 10 10 0.04 0.00 0 -7 -2
#> 11 11 -0.10 -0.14 -1 -8 -1
#> 12 12 -0.12 -0.02 -1 -9 1
#> 13 13 -0.16 -0.04 -1 -10 1
#> 14 14 -0.16 0.00 0 -10 0
#> 15 15 -0.14 0.02 1 -9 -2
#> 16 16 -0.14 0.00 0 -9 -1
#> 17 17 -0.13 0.01 1 -8 -2
#> 18 18 -0.15 -0.02 -1 -9 0
#> 19 19 -0.22 -0.07 -1 -10 2
#> 20 20 -0.30 -0.08 -1 -11 4
#> 21 21 -0.12 0.18 1 -10 2
#> 22 22 -0.12 0.00 0 -10 1
#> 23 23 -0.11 0.01 1 -9 -1
#> 24 24 -0.07 0.04 1 -8 -3
#> 25 25 -0.05 0.02 1 -7 -5
#> 26 26 -0.09 -0.04 -1 -8 NA
#> 27 27 -0.10 -0.01 -1 -9 NA
#> 28 28 -0.15 -0.05 -1 -10 NA
#> 29 29 -0.17 -0.02 -1 -11 NA
#> 30 30 -0.22 -0.05 -1 -12 NA
我们不是识别序列中的条纹,而是查看rolling_signs
中差异符号的累积总和。 next_five
计算接下来五行rolling_signs
的差异。当next_five
为-5时,接下来的五行的变化会有所减少。
(diff_details$next_five %in% -5) %>% which %>% max
#> [1] 25
每个步骤/列都可以抽象为一个函数,如:
cum_diff_signs <- function(xs, window) {
rolling_signs <- cumsum(sign(c(0, diff(xs))))
next_diffs <- dplyr::lead(rolling_signs, window) - rolling_signs
next_diffs
}
cum_diff_signs(df$az, 5)
#> [1] -4 -4 -4 -5 -4 -4 -4 -4 -3 -2 -1 1 1 0 -2 -1 -2 0 2 4 2 1 -1
#> [24] -3 -5 NA NA NA NA NA
(cum_diff_signs(df$az, 5) %in% -5) %>% which %>% max
#> [1] 25