我正在尝试使用R.3.3.1中的BradleyTerry2软件包在我的数据分析中包含特定于竞争的变量(我还尝试使用R.2.11.1与旧版本的BradleyTerry2进行比较)。我面临的问题是没有正确考虑我的预测变量。下面的例子显示了我的问题,使用CEMS数据来说明我的观点。
CEMS.BTmodel_01 <- BTm(outcome = cbind(win1.adj, win2.adj),
player1 = school1,
player2 = school2,
formula = ~ .. + WOR[student] * LAT[..],
refcat = "Stockholm",
data = CEMS)
summary(CEMS.BTmodel_01)
使用这个模型,我们得到一个AIC = 5837.4,估计到LAT的相互作用[..] * WOR [学生] = 0.85771
现在,如果我在列表顶部添加一所新学校(图卢兹,LAT = 1)
Toulouse <- c(1,0,0,0,0,0,0)
Barcelona <- c(0,1,0,0,0,0,0)
London <- c(0,0,1,0,0,0,0)
Milano <- c(0,0,0,1,0,0,0)
Paris <- c(0,0,0,0,1,0,0)
St.Gallen <- c(0,0,0,0,0,1,0)
Stockholm <- c(0,0,0,0,0,0,1)
LAT <- c(1,1,0,1,1,0,0)
schools <- data.frame(Toulouse, Barcelona, London, Milano, Paris, St.Gallen, Stockholm, LAT)
rownames(schools) <- c("Toulouse", "Barcelona", "London", "Milano", "Paris", "St.Gallen", "Stockholm")
CEMS$schools <- schools
我希望从分析中得到相同的结果,因为新学校没有出现在数据集中。但我实际得到AIC = 5855.8,互动LAT [..] * WOR [学生] = 0.13199
使用数据,看起来我的预测变量的名称(这里是学校的名称)没有被正确考虑并与我的比较数据(这里是欧洲学生的成对比较)相匹配。相反,重要的是他们的订单。
我做错了什么?
答案 0 :(得分:0)
CEMS$schools
行应符合school1
和school2
因素的级别(CEMS$schools
的rownames实际上未在代码中使用;第一行应该匹配第一级等)。因此,您需要更新school1
和school2
:
CEMS$preferences <-
within(CEMS$preferences, {
school1 <- factor(school1, rownames(CEMS$schools))
school2 <- factor(school2, rownames(CEMS$schools))
})
CEMS.BTmodel_02 <- BTm(outcome = cbind(win1.adj, win2.adj),
player1 = school1,
player2 = school2,
formula = ~ .. + WOR[student] * LAT[..],
refcat = "Stockholm",
data = CEMS)
现在模型与预期相同:
> CEMS.BTmodel_01
Bradley Terry model fit by glm.fit
Call: BTm(outcome = cbind(win1.adj, win2.adj), player1 = school1, player2 = school2,
formula = ~.. + WOR[student] * LAT[..], refcat = "Stockholm",
data = CEMS)
Coefficients [contrasts: ..=contr.treatment ]:
..Barcelona ..London ..Milano
0.5044 1.6037 0.3538
..Paris ..St.Gallen WOR[student]yes
0.8741 0.5268 NA
LAT[..] WOR[student]yes:LAT[..]
NA 0.8577
Degrees of Freedom: 4454 Total (i.e. Null); 4448 Residual
(91 observations deleted due to missingness)
Null Deviance: 5499
Residual Deviance: 4912 AIC: 5837
> CEMS.BTmodel_02
Bradley Terry model fit by glm.fit
Call: BTm(outcome = cbind(win1.adj, win2.adj), player1 = school1, player2 = school2,
formula = ~.. + WOR[student] * LAT[..], refcat = "Stockholm",
data = CEMS)
Coefficients [contrasts: ..=contr.treatment ]:
..Toulouse ..Barcelona ..London
NA 0.5044 1.6037
..Milano ..Paris ..St.Gallen
0.3538 0.8741 0.5268
WOR[student]yes LAT[..] WOR[student]yes:LAT[..]
NA NA 0.8577
Degrees of Freedom: 4454 Total (i.e. Null); 4448 Residual
(91 observations deleted due to missingness)
Null Deviance: 5499
Residual Deviance: 4912 AIC: 5837