我正在使用GLM(在Spark 2.0中使用ML)对具有一个分类自变量的数据运行模型。我正在使用StringIndexer
和OneHotEncoder
将该列转换为虚拟变量,然后使用VectorAssembler
将其与连续的自变量组合成稀疏矢量列。
如果我的列名是continuous
和categorical
,其中第一列是浮点数列,第二列是表示(在本例中为8)不同类别的字符串列:
string_indexer = StringIndexer(inputCol='categorical',
outputCol='categorical_index')
encoder = OneHotEncoder(inputCol ='categorical_index',
outputCol='categorical_vector')
assembler = VectorAssembler(inputCols=['continuous', 'categorical_vector'],
outputCol='indep_vars')
pipeline = Pipeline(stages=string_indexer+encoder+assembler)
model = pipeline.fit(df)
df = model.transform(df)
到目前为止一切正常,我运行模型:
glm = GeneralizedLinearRegression(family='gaussian',
link='identity',
labelCol='dep_var',
featuresCol='indep_vars')
model = glm.fit(df)
model.params
哪个输出:
DenseVector([8440.0573,3729.449,4388.9042,2871.1802,4613.7646,5163.3233,5186.6189,5513.1392])
这很好,因为我可以验证这些系数基本上是正确的(通过其他来源)。但是,我还没有找到一种很好的方法来将这些系数链接到原始列名,我需要这样做(我已经为SO简化了这个模型;还有更多参与。)
列名和系数之间的关系由StringIndexer
和OneHotEncoder
打破。我找到了一个相当慢的方式:
df[['categorical', 'categorical_index']].distinct()
这给了我一个小数据框,将字符串名称与数字名称相关联,我想我可以将其与稀疏向量中的键相关联?当你考虑数据的规模时,这是非常笨拙和缓慢的。
有更好的方法吗?
答案 0 :(得分:2)
我也遇到了确切的问题,我得到了你的解决方案:)
这是基于Scala版本: How to map variable names to features after pipeline
# transform data
best_model = pipeline.fit(df)
best_pred = best_model.transform(df)
# extract features metadata
meta = [f.metadata
for f in best_pred.schema.fields
if f.name == 'features'][0]
# access feature name and index
features_name_ind = meta['ml_attr']['attrs']['numeric'] + \
meta['ml_attr']['attrs']['binary']
print features_name_ind[:2]
# [{'name': 'feature_name_1', 'idx': 0}, {'name': 'feature_name_2', 'idx': 1}]
答案 1 :(得分:0)
对不起,这似乎是一个非常晚的答案,也许你可能已经想出来了,但无论如何。我最近做了相同的字符串索引器,OneHotEncoder和VectorAssembler的实现,据我所知,以下代码将呈现您正在寻找的内容。
from pyspark.ml import Pipeline
from pyspark.ml.feature import OneHotEncoder, StringIndexer, VectorAssembler
categoricalColumns = ["one_categorical_variable"]
stages = [] # stages in the pipeline
for categoricalCol in categoricalColumns:
# Category Indexing with StringIndexer
stringIndexer = StringIndexer(inputCol=categoricalCol,
outputCol=categoricalCol+"Index")
# Using OneHotEncoder to convert categorical variables into binary
SparseVectors
encoder = OneHotEncoder(inputCol=stringIndexer.getOutputCol(),
outputCol=categoricalCol+"classVec")
# Adding the stages so that they will be run all at once later
stages += [stringIndexer, encoder]
# convert label into label indices using the StringIndexer
label_stringIdx = StringIndexer(inputCol = "Service_Level", outputCol =
"label")
stages += [label_stringIdx]
# Transform all features into a vector using VectorAssembler
numericCols = ["continuous_variable"]
assemblerInputs = map(lambda c: c + "classVec", categoricalColumns) +
numericCols
assembler = VectorAssembler(inputCols=assemblerInputs, outputCol="features")
stages += [assembler]
# Creating a Pipeline for Training
pipeline = Pipeline(stages=stages)
# Running the feature transformations.
pipelineModel = pipeline.fit(df)
df = pipelineModel.transform(df)
答案 2 :(得分:0)
对于PySpark,以下是将要素索引映射到要素名称的解决方案:
首先,训练模型:
pipeline = Pipeline().setStages([label_stringIdx,assembler,classifier])
model = pipeline.fit(x)
转换数据:
df_output = model.transform(x)
提取要素索引和要素名称之间的映射。将数字属性和二进制属性合并到一个列表中。
numeric_metadata = df_output.select("features").schema[0].metadata.get('ml_attr').get('attrs').get('numeric')
binary_metadata = df_output.select("features").schema[0].metadata.get('ml_attr').get('attrs').get('binary')
merge_list = numeric_metadata + binary_metadata
输出:
[{'name': 'variable_abc', 'idx': 0},
{'name': 'variable_azz', 'idx': 1},
{'name': 'variable_azze', 'idx': 2},
{'name': 'variable_azqs', 'idx': 3},
....
答案 3 :(得分:0)
我没有研究以前的版本,但是在Spark 2.4.3中,仅使用summary
的{{1}}属性就可以检索有关功能的大量信息。
打印GeneralizedLinearRegressionModel
会导致以下情况:
summary
可以通过访问内部Java对象来构造Coefficients:
Feature Estimate Std Error T Value P Value
(Intercept) -0.1742 0.4298 -0.4053 0.6853
x1_enc_(-inf,5.5] -0.7781 0.3661 -2.1256 0.0335
x1_enc_(5.5,8.5] 0.1850 0.3736 0.4953 0.6204
x1_enc_(8.5,9.5] -0.3937 0.4324 -0.9106 0.3625
x45_enc_1-10-7-8-9 -0.5382 0.2718 -1.9801 0.0477
x45_enc_2-3-4-ND 0.5187 0.2811 1.8454 0.0650
x45_enc_5 -0.0456 0.3353 -0.1361 0.8917
x33_enc_1 0.6361 0.4043 1.5731 0.1157
x33_enc_10 0.0059 0.4083 0.0145 0.9884
x33_enc_2-3-4-8-ND 0.6121 0.1741 3.5152 0.0004
x102_enc_(-inf,4.5] 0.5315 0.1695 3.1354 0.0017
(Dispersion parameter for binomial family taken to be 1.0000)
Null deviance: 937.7397 on 666 degrees of freedom
Residual deviance: 858.8846 on 666 degrees of freedom
AIC: 880.8846
列:
Feature
可以通过以下串联构造In [131]: glm.summary._call_java('featureNames')
Out[131]:
['x1_enc_(-inf,5.5]',
'x1_enc_(5.5,8.5]',
'x1_enc_(8.5,9.5]',
'x45_enc_1-10-7-8-9',
'x45_enc_2-3-4-ND',
'x45_enc_5',
'x33_enc_1',
'x33_enc_10',
'x33_enc_2-3-4-8-ND',
'x102_enc_(-inf,4.5]']
列:
Estimate
PS。:This line显示了为什么可以使用内部Java对象检索列In [134]: [glm.intercept] + list(glm.coefficients)
Out[134]:
[-0.17419580191414719,
-0.7781490190325139,
0.1850214800764976,
-0.3936963366945294,
-0.5382255101657534,
0.5187453074755956,
-0.045649677050663987,
0.6360647167539958,
0.00593020879299306,
0.6121475986933201,
0.531510974697773]
的原因。