我在Linux上运行并轻松使用mclapply
。即使在使用parlapply
后,我也会遇到clusterEvalQ
的一些错误。
在我进一步解决问题之前,是否有任何意义,即两者之间是否存在显着的速度差异,或者人们在Windows上使用parLapply
时会不会这样做?
我已经阅读了parLapplyLB
并且可以看到这种方法的用途,但如果我严格关注mclapply
和parlapply
那么FORK方法和PSOCK方法会有很大不同在速度?
我的功能的性质可能决定了答案;它正在使用stri_extract
。
答案 0 :(得分:5)
一些快速基准测试表明mclapply
可能稍快一些,但这可能取决于具体的系统和问题。作业越平衡,实际任务越慢,它就越重要,你使用哪种功能。
library(parallel)
library(microbenchmark)
microbenchmark(
parLapply = {cl <- makeCluster(2)
parLapply(cl, rep(1:7, 3), function(x) {set.seed(1); rnorm(10^x)})
stopCluster(cl)},
mclapply = {mclapply(rep(1:7 , 3), function(x) {set.seed(1); rnorm(10^x)}, mc.cores = 2)},
times = 10
)
#Unit: seconds
# expr min lq mean median uq max neval
#parLapply 1.85548 2.04397 3.332970 3.071284 4.323514 6.294364 10
#mclapply 1.62610 1.65288 2.217407 1.849594 2.243418 5.435189 10
microbenchmark(
parLapply = {cl <- makeCluster(2)
parLapply(cl, rep(6, 20), function(x) {set.seed(1); rnorm(10^x)})
stopCluster(cl)},
mclapply = {mclapply(rep(6, 20), function(x) {set.seed(1); rnorm(10^x)}, mc.cores = 2)},
times = 10
)
#Unit: milliseconds
# expr min lq mean median uq max neval
#parLapply 1150.657 1188.9750 1705.1364 1242.739 2071.276 3785.516 10
# mclapply 820.692 932.2262 994.4404 1000.402 1079.930 1117.863 10
sessionInfo()
#R version 3.3.1 (2016-06-21)
#Platform: x86_64-pc-linux-gnu (64-bit)
#Running under: Ubuntu 14.04.5 LTS
#
#locale:
# [1] LC_CTYPE=de_DE.UTF-8 LC_NUMERIC=C LC_TIME=de_DE.UTF-8 LC_COLLATE=de_DE.UTF-8
# [5] LC_MONETARY=de_DE.UTF-8 LC_MESSAGES=de_DE.UTF-8 LC_PAPER=de_DE.UTF-8 LC_NAME=C
# [9] LC_ADDRESS=C LC_TELEPHONE=C LC_MEASUREMENT=de_DE.UTF-8 LC_IDENTIFICATION=C
#
#attached base packages:
#[1] parallel stats graphics grDevices utils datasets methods base
#
#other attached packages:
#[1] microbenchmark_1.4-2.1 doParallel_1.0.10 iterators_1.0.8 foreach_1.4.3
#
#loaded via a namespace (and not attached):
# [1] colorspace_1.2-6 scales_0.4.0 plyr_1.8.4 tools_3.3.1 gtable_0.2.0 Rcpp_0.12.4
# [7] ggplot2_2.1.0 codetools_0.2-14 grid_3.3.1 munsell_0.4.3