我知道这个问题属于峰值检测和there are answers available的范畴,但我认为我的问题非常简单,并且是指原理证明。
假设我生成了多个nxn
2D numpy浮点值数组,这些数组引用了nxn
点(离散域)的常规网格:
myarray=
array([[ 0.82760819, 0.82113999, 0.811576 , 0.80308705, 0.81231903,
0.82296263, 0.78448964, 0.79308308, 0.82160627, 0.83475755,
0.8580934 , 0.8857617 , 0.89901092, 0.92479025, 0.91840606,
0.91029942, 0.88523943, 0.85798491, 0.84190422, 0.83350783,
0.83520675],
[ 0.84971526, 0.84759644, 0.81429419, 0.79936736, 0.81750327,
0.81874686, 0.80666801, 0.82297348, 0.84980788, 0.85698662,
0.87819988, 0.89572185, 0.89009723, 0.90347858, 0.89703473,
0.90092666, 0.88362073, 0.86711197, 0.84791422, 0.83632138,
0.83685225], ...] #you can generate any nxn array of random values
现在让我们将它们标准化:
peak_value=myarray.max()
norm_array=myarray/peak_value
然后找到峰的(x,y)
坐标:
from collections import Counter
longit=[] #x values of the peak
latit=[] #y values of the peak
for x in range(myarray.shape[0]):
for y in range(myarray.shape[1]):
if norm_array[x][y]==1:
longit.append(x)
latit.append(y)
x=numpy.array(longit)
y=numpy.array(latit)
c=zip(x,y)
temp=Counter(elem for elem in c) #Counts the number of peaks in each (x,y) point in the 11x11 grid
d=dict(Counter(temp)) #Has the shape d={(x,y): number of peaks}
现在这只是2D numpy数组的单一实现。给定多个数组,问题是:
这是找到峰值(x,y)的正确方法吗?有没有更有效的方法?考虑可能存在多个峰值。
答案 0 :(得分:2)
在C / C ++中,使用浮点数进行{711}
被认为是危险的。
如果没有多个完全相同的长矛,您可以使用==
:
numpy.argmax
如果您需要所有长矛,可以使用a = random.rand(13, 11)
idx_unrolled = argmax(a)
the_peak = a[idx_unrolled/11, idx_unrolled%11]
获取i
,j
索引列表:
numpy.where
使用所需数量的i, j = where(a > 0.99*the_peak)
来调整保证金。对于单精度浮点,它不会接近9
。
最好的方法可能是[https://stackoverflow.com/a/19141711/774971]:
1