Pandas - DataFrame reindex函数返回警告

时间:2016-08-03 17:13:58

标签: python pandas dataframe

代码有什么问题?: 它返回了一个警告:

  

警告(来自警告模块):文件   " C:\ Python27 \ lib \ site-packages \ numpy \ core \ numeric.py",第2515行       return bool(asarray(a1 == a2).all())FutureWarning:elementwise比较失败;返回标量,但将来会   执行元素比较

import pandas as pd
import numpy as np

Data1 = {'State':['Ohio','Ohio','Ohio','Nevada','Nevada'],'Year':[2000,2001,2002,2001,2002],'POP':[1.5,1.7,3.6,2.4,2.9]}

Frame4 =pd.DataFrame(Data1)
print('\n')
print Frame4

Frame5 = Frame4.reindex(['a','b','c','d','e'])
print Frame5

my o/p
 POP   State  Year
0  1.5    Ohio  2000
1  1.7    Ohio  2001
2  3.6    Ohio  2002
3  2.4  Nevada  2001
4  2.9  Nevada  2002

Warning (from warnings module):
  File "C:\Python27\lib\site-packages\numpy\core\numeric.py", line 2515
    return bool(asarray(a1 == a2).all())
FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison
   POP State  Year
a  NaN   NaN   NaN
b  NaN   NaN   NaN
c  NaN   NaN   NaN
d  NaN   NaN   NaN
e  NaN   NaN   NaN

2 个答案:

答案 0 :(得分:0)

在尝试更改索引轴的名称时,必须使用rename代替reindex

Frame5 = Frame4.rename({0:'a', 1:'b', 2:'c', 3:'d', 4:'e'})
print(Frame5)
   POP   State  Year
a  1.5    Ohio  2000
b  1.7    Ohio  2001
c  3.6    Ohio  2002
d  2.4  Nevada  2001
e  2.9  Nevada  2002

应用reindex的目的是在新索引选择逻辑中对齐数据帧的索引。

默认情况下,新索引中数据框中没有相应记录的值将被指定为NaN

因此,当您将新索引逻辑指定为list('abcde')时,它会检查所有索引值,但由于之前的索引位于range(0,4),因此无法找到匹配项。因此,它返回了Nans

答案 1 :(得分:0)

试试这个:

Frame4 =pd.DataFrame(Data1)
print('\n')
print Frame4

Frame4.index = ['a','b','c','d','e']
print Frame4


   POP   State  Year
0  1.5    Ohio  2000
1  1.7    Ohio  2001
2  3.6    Ohio  2002
3  2.4  Nevada  2001
4  2.9  Nevada  2002


   POP   State  Year
a  1.5    Ohio  2000
b  1.7    Ohio  2001
c  3.6    Ohio  2002
d  2.4  Nevada  2001
e  2.9  Nevada  2002