I have an n x p
matrix that looks like this:
n = 100
p = 10
x <- matrix(sample(c(0,1), size = p*n, replace = TRUE), n, p)
I want to create an n x p x p
array A
whose k
th item along the 1st dimension is a p x p
diagonal matrix containing the elements of x[k,]
. What is the most efficient way to do this in R? I'm looking for a way that uses outer
(or some other vectorized approach) rather than one of the apply
functions.
Solution using lapply
:
A <- aperm(simplify2array(lapply(1:nrow(x), function(i) diag(x[i,]))), c(3,2,1))
I'm looking for something more efficient than this.
Thanks.
答案 0 :(得分:2)
作为一个起点,这里是一个简单的V1 V2
abc 54 => where abc is the sum of previous abc and 12bc
87gd 3
987 50
循环方法,预先分配矩阵。
for
它应该运行得相对较快。在我的机器上,对于1000 X 100矩阵,# pre-allocate matrix of desired size
myArray <- array(0, dim=c(ncol(x), ncol(x), nrow(x)))
# fill in array
for(i in seq_len(nrow(x))) myArray[,,i] <- diag(x[i,])
方法花费0.87秒,而lapply
循环(包括数组预分配)花费0.25秒将矩阵转换为您想要的数组。因此for
循环的速度提高了约3.5倍。
转置原始矩阵
另请注意,R矩阵上的行操作往往比列操作慢。这是因为矩阵按列存储在内存中。如果转置矩阵并以这种方式执行操作,则在100X1000矩阵上完成操作的时间将降至0.14,即第一个for循环的一半,并且比for
方法快7倍。