如何检查2个段是否相交?
我有以下数据:
Segment1 [ {x1,y1}, {x2,y2} ]
Segment2 [ {x1,y1}, {x2,y2} ]
我需要在python中编写一个小算法来检测这两行是否相交。
更新:
答案 0 :(得分:59)
User @ i_4_got使用Python中非常有效的解决方案指向this page。为了方便起见,我在这里重现它(因为它让我很高兴在这里拥有它):
def ccw(A,B,C):
return (C.y-A.y) * (B.x-A.x) > (B.y-A.y) * (C.x-A.x)
# Return true if line segments AB and CD intersect
def intersect(A,B,C,D):
return ccw(A,C,D) != ccw(B,C,D) and ccw(A,B,C) != ccw(A,B,D)
答案 1 :(得分:42)
一条线的等式是:
f(x) = A*x + b = y
对于一个段,它完全相同,只是x包含在一个区间I中。
如果您有两个细分,定义如下:
Segment1 = {(X1, Y1), (X2, Y2)}
Segment2 = {(X3, Y3), (X4, Y4)}
潜在交点(Xa,Ya)的abcisse Xa必须包含在区间I1和I2中,定义如下:
I1 = [min(X1,X2), max(X1,X2)]
I2 = [min(X3,X4), max(X3,X4)]
我们可以说Xa包含在:
中Ia = [max( min(X1,X2), min(X3,X4) ),
min( max(X1,X2), max(X3,X4) )]
现在,我们需要检查此时间间隔是否存在:
if (max(X1,X2) < min(X3,X4))
return false; // There is no mutual abcisses
所以,我们有两个线公式,一个相互间隔。您的行公式为:
f1(x) = A1*x + b1 = y
f2(x) = A2*x + b2 = y
当我们逐段得到两点时,我们能够确定A1,A2,b1和b2:
A1 = (Y1-Y2)/(X1-X2) // Pay attention to not dividing by zero
A2 = (Y3-Y4)/(X3-X4) // Pay attention to not dividing by zero
b1 = Y1-A1*X1 = Y2-A1*X2
b2 = Y3-A2*X3 = Y4-A2*X4
如果段是平行的,那么A1 == A2:
if (A1 == A2)
return false; // Parallel segments
站在两条线上的点(Xa,Ya)必须验证公式f1和f2:
Ya = A1 * Xa + b1
Ya = A2 * Xa + b2
A1 * Xa + b1 = A2 * Xa + b2
Xa = (b2 - b1) / (A1 - A2) // Once again, pay attention to not dividing by zero
最后要做的是检查Xa是否包含在Ia中:
if ( (Xa < max( min(X1,X2), min(X3,X4) )) ||
(Xa > min( max(X1,X2), max(X3,X4) )) )
return false; // intersection is out of bound
else
return true;
除此之外,您可以在启动时检查四个提供的点中的两个不等于避免所有测试。
答案 2 :(得分:25)
您不必精确计算其中段是否相交,但只能理解 它们是否相交。这将简化解决方案。
我们的想法是将一个细分作为“锚点”,将第二个细分为2个点
现在,您必须找到每个点到“锚定”段(OnLeft,OnRight或Collinear)的相对位置。
对两个点执行此操作后,检查其中一个点是OnLeft,另一个是OnRight(或者如果您希望包含不正确的交叉点,则可能包括共线位置)。
然后,您必须使用锚点和分隔段的角色重复此过程。
当且仅当其中一个点是OnLeft而另一个点是OnRight时,才存在交集。有关每种可能情况的示例图像,请参阅this link以获取更详细的说明。
实现这样的方法比实际实现找到交叉点的方法要容易得多(考虑到你必须处理的许多极端情况)。
<强>更新强>
以下功能应说明这个想法(来源:Computational Geometry in C)
备注:此示例假设使用整数。如果您正在使用某些浮点表示(这显然可能使事情复杂化),那么您应该确定一些epsilon值来表示“相等”(主要用于IsCollinear
评估)。
// points "a" and "b" forms the anchored segment.
// point "c" is the evaluated point
bool IsOnLeft(Point a, Point b, Point c)
{
return Area2(a, b, c) > 0;
}
bool IsOnRight(Point a, Point b, Point c)
{
return Area2(a, b, c) < 0;
}
bool IsCollinear(Point a, Point b, Point c)
{
return Area2(a, b, c) == 0;
}
// calculates the triangle's size (formed by the "anchor" segment and additional point)
int Area2(Point a, Point b, Point c)
{
return (b.X - a.X) * (c.Y - a.Y) -
(c.X - a.X) * (b.Y - a.Y);
}
当然,在使用这些函数时,必须记住检查每个段是否位于另一个段之间(因为它们是有限段,而不是无限行)。
此外,使用这些功能,您可以了解您是否有正确的或不正确的交叉点。
答案 3 :(得分:16)
假设两个段具有端点A,B和C,D。确定交叉点的数字稳健方法是检查四个决定因素的符号:
| Ax-Cx Bx-Cx | | Ax-Dx Bx-Dx |
| Ay-Cy By-Cy | | Ay-Dy By-Dy |
| Cx-Ax Dx-Ax | | Cx-Bx Dx-Bx |
| Cy-Ay Dy-Ay | | Cy-By Dy-By |
对于交叉点,左侧的每个行列式必须与右侧的每个行列式具有相反的符号,但两条线之间不需要任何关系。您基本上是检查一个线段的每个点与另一个线段,以确保它们位于另一个线段定义的线的相对侧。
答案 4 :(得分:6)
以下是使用点积的解决方案:
Enter two words separated by spaces: Hello World
Variable 1 now contains: Hello
Variable 2 contains: World
以下是Desmos中的可视化内容:Line Segment Intersection
答案 5 :(得分:6)
基于Liran's和Grumdrig's这里的优秀答案是一个完整的Python代码,用于验证关闭段是否相交。适用于共线段,平行于轴Y的段,退化段(详见恶魔)。假设整数坐标。浮点坐标需要修改点相等性测试。
def side(a,b,c):
""" Returns a position of the point c relative to the line going through a and b
Points a, b are expected to be different
"""
d = (c[1]-a[1])*(b[0]-a[0]) - (b[1]-a[1])*(c[0]-a[0])
return 1 if d > 0 else (-1 if d < 0 else 0)
def is_point_in_closed_segment(a, b, c):
""" Returns True if c is inside closed segment, False otherwise.
a, b, c are expected to be collinear
"""
if a[0] < b[0]:
return a[0] <= c[0] and c[0] <= b[0]
if b[0] < a[0]:
return b[0] <= c[0] and c[0] <= a[0]
if a[1] < b[1]:
return a[1] <= c[1] and c[1] <= b[1]
if b[1] < a[1]:
return b[1] <= c[1] and c[1] <= a[1]
return a[0] == c[0] and a[1] == c[1]
#
def closed_segment_intersect(a,b,c,d):
""" Verifies if closed segments a, b, c, d do intersect.
"""
if a == b:
return a == c or a == d
if c == d:
return c == a or c == b
s1 = side(a,b,c)
s2 = side(a,b,d)
# All points are collinear
if s1 == 0 and s2 == 0:
return \
is_point_in_closed_segment(a, b, c) or is_point_in_closed_segment(a, b, d) or \
is_point_in_closed_segment(c, d, a) or is_point_in_closed_segment(c, d, b)
# No touching and on the same side
if s1 and s1 == s2:
return False
s1 = side(c,d,a)
s2 = side(c,d,b)
# No touching and on the same side
if s1 and s1 == s2:
return False
return True
答案 6 :(得分:4)
您有两个线段。通过端点A和A定义一个段。 B和第二段由端点C&amp; D.有一个很好的技巧来表明它们必须在段的边界内相交。 (请注意,线条本身可能会超出线段的边界,因此您必须小心。良好的代码也会注意平行线。)
诀窍是测试A和B点必须在线CD的两侧排成一行,并且C和D点必须位于AB线的两侧。
由于这是作业,我不会给你一个明确的解决方案。但是一个简单的测试就是使用点积来看一条线的哪一侧。因此,对于给定的行CD,计算该行的法向量(我将其称为N_C。)现在,只需测试这两个结果的符号:
dot(A-C,N_C)
和
dot(B-C,N_C)
如果这些结果具有相反的符号,则A和B是线CD的相对侧。现在对另一条线AB进行相同的测试。它具有法向量N_A。比较
的迹象dot(C-A,N_A)
和
dot(D-A,N_A)
我会留给你弄清楚如何计算法线向量。 (在二维中,这是微不足道的,但是你的代码会担心A和B是否是不同的点?同样,C和D是不同的吗?)
您仍然需要担心位于同一无限线上的线段,或者如果一个点实际落在另一个线段本身上。好的代码将迎合每一个可能的问题。
答案 7 :(得分:3)
这是C代码,用于检查两个点是否在线段的相对侧。使用此代码,您可以检查两个段是否相交。
// true if points p1, p2 lie on the opposite sides of segment s1--s2
bool oppositeSide (Point2f s1, Point2f s2, Point2f p1, Point2f p2) {
//calculate normal to the segment
Point2f vec = s1-s2;
Point2f normal(vec.y, -vec.x); // no need to normalize
// vectors to the points
Point2f v1 = p1-s1;
Point2f v2 = p2-s1;
// compare signs of the projections of v1, v2 onto the normal
float proj1 = v1.dot(normal);
float proj2 = v2.dot(normal);
if (proj1==0 || proj2==0)
cout<<"collinear points"<<endl;
return(SIGN(proj1) != SIGN(proj2));
}
答案 8 :(得分:3)
这是另一个检查闭合段是否相交的python代码。它是http://www.cdn.geeksforgeeks.org/check-if-two-given-line-segments-intersect/中C ++代码的重写版本。此实现涵盖所有特殊情况(例如,所有点共线)。
def on_segment(p, q, r):
'''Given three colinear points p, q, r, the function checks if
point q lies on line segment "pr"
'''
if (q[0] <= max(p[0], r[0]) and q[0] >= min(p[0], r[0]) and
q[1] <= max(p[1], r[1]) and q[1] >= min(p[1], r[1])):
return True
return False
def orientation(p, q, r):
'''Find orientation of ordered triplet (p, q, r).
The function returns following values
0 --> p, q and r are colinear
1 --> Clockwise
2 --> Counterclockwise
'''
val = ((q[1] - p[1]) * (r[0] - q[0]) -
(q[0] - p[0]) * (r[1] - q[1]))
if val == 0:
return 0 # colinear
elif val > 0:
return 1 # clockwise
else:
return 2 # counter-clockwise
def do_intersect(p1, q1, p2, q2):
'''Main function to check whether the closed line segments p1 - q1 and p2
- q2 intersect'''
o1 = orientation(p1, q1, p2)
o2 = orientation(p1, q1, q2)
o3 = orientation(p2, q2, p1)
o4 = orientation(p2, q2, q1)
# General case
if (o1 != o2 and o3 != o4):
return True
# Special Cases
# p1, q1 and p2 are colinear and p2 lies on segment p1q1
if (o1 == 0 and on_segment(p1, p2, q1)):
return True
# p1, q1 and p2 are colinear and q2 lies on segment p1q1
if (o2 == 0 and on_segment(p1, q2, q1)):
return True
# p2, q2 and p1 are colinear and p1 lies on segment p2q2
if (o3 == 0 and on_segment(p2, p1, q2)):
return True
# p2, q2 and q1 are colinear and q1 lies on segment p2q2
if (o4 == 0 and on_segment(p2, q1, q2)):
return True
return False # Doesn't fall in any of the above cases
以下是验证其有效的测试功能。
import matplotlib.pyplot as plt
def test_intersect_func():
p1 = (1, 1)
q1 = (10, 1)
p2 = (1, 2)
q2 = (10, 2)
fig, ax = plt.subplots()
ax.plot([p1[0], q1[0]], [p1[1], q1[1]], 'x-')
ax.plot([p2[0], q2[0]], [p2[1], q2[1]], 'x-')
print(do_intersect(p1, q1, p2, q2))
p1 = (10, 0)
q1 = (0, 10)
p2 = (0, 0)
q2 = (10, 10)
fig, ax = plt.subplots()
ax.plot([p1[0], q1[0]], [p1[1], q1[1]], 'x-')
ax.plot([p2[0], q2[0]], [p2[1], q2[1]], 'x-')
print(do_intersect(p1, q1, p2, q2))
p1 = (-5, -5)
q1 = (0, 0)
p2 = (1, 1)
q2 = (10, 10)
fig, ax = plt.subplots()
ax.plot([p1[0], q1[0]], [p1[1], q1[1]], 'x-')
ax.plot([p2[0], q2[0]], [p2[1], q2[1]], 'x-')
print(do_intersect(p1, q1, p2, q2))
p1 = (0, 0)
q1 = (1, 1)
p2 = (1, 1)
q2 = (10, 10)
fig, ax = plt.subplots()
ax.plot([p1[0], q1[0]], [p1[1], q1[1]], 'x-')
ax.plot([p2[0], q2[0]], [p2[1], q2[1]], 'x-')
print(do_intersect(p1, q1, p2, q2))
答案 9 :(得分:1)
到目前为止,Georgy给出的答案是最干净的。由于brycboe的示例虽然也很简单,但也存在共线性问题,所以不得不继续研究下去。
测试代码:
#!/usr/bin/python
#
# Notes on intersection:
#
# https://bryceboe.com/2006/10/23/line-segment-intersection-algorithm/
#
# https://stackoverflow.com/questions/3838329/how-can-i-check-if-two-segments-intersect
from shapely.geometry import LineString
class Point:
def __init__(self,x,y):
self.x = x
self.y = y
def ccw(A,B,C):
return (C.y-A.y)*(B.x-A.x) > (B.y-A.y)*(C.x-A.x)
def intersect(A,B,C,D):
return ccw(A,C,D) != ccw(B,C,D) and ccw(A,B,C) != ccw(A,B,D)
def ShapelyIntersect(A,B,C,D):
return LineString([(A.x,A.y),(B.x,B.y)]).intersects(LineString([(C.x,C.y),(D.x,D.y)]))
a = Point(0,0)
b = Point(0,1)
c = Point(1,1)
d = Point(1,0)
'''
Test points:
b(0,1) c(1,1)
a(0,0) d(1,0)
'''
# F
print(intersect(a,b,c,d))
# T
print(intersect(a,c,b,d))
print(intersect(b,d,a,c))
print(intersect(d,b,a,c))
# F
print(intersect(a,d,b,c))
# same end point cases:
print("same end points")
# F - not intersected
print(intersect(a,b,a,d))
# T - This shows as intersected
print(intersect(b,a,a,d))
# F - this does not
print(intersect(b,a,d,a))
# F - this does not
print(intersect(a,b,d,a))
print("same end points, using shapely")
# T
print(ShapelyIntersect(a,b,a,d))
# T
print(ShapelyIntersect(b,a,a,d))
# T
print(ShapelyIntersect(b,a,d,a))
# T
print(ShapelyIntersect(a,b,d,a))
答案 10 :(得分:1)
对于段AB和CD,找到CD的斜率
slope=(Dy-Cy)/(Dx-Cx)
将CD延伸到A和B上,并将光盘直接向上移动
dist1=slope*(Cx-Ax)+Ay-Cy
dist2=slope*(Dx-Ax)+Ay-Dy
检查他们是否在对面
return dist1*dist2<0
答案 11 :(得分:1)
由于您没有提到要查找线的交叉点,因此问题变得更容易解决。如果您需要交叉点,那么OMG_peanuts的答案是一种更快的方法。但是,如果您只想查找线是否相交,可以使用线方程(ax + by + c = 0)来实现。方法如下:
让我们从两个线段开始:段1和段2.
segment1 = [[x1,y1], [x2,y2]]
segment2 = [[x3,y3], [x4,y4]]
检查两个线段是否为非零长度线和不同的线段。
从这里开始,我假设这两个段的长度非零且不同。对于每个线段,计算线的斜率,然后以ax + + + c = 0的形式获得线的方程。现在,计算f = ax +的值+ + c对于两个点。其他线段(也为其他线段重复此操作)。
a2 = (y3-y4)/(x3-x4);
b1 = -1;
b2 = -1;
c1 = y1 - a1*x1;
c2 = y3 - a2*x3;
// using the sign function from numpy
f1_1 = sign(a1*x3 + b1*y3 + c1);
f1_2 = sign(a1*x4 + b1*y4 + c1);
f2_1 = sign(a2*x1 + b2*y1 + c2);
f2_2 = sign(a2*x2 + b2*y2 + c2);
现在剩下的就是不同的情况。如果任何点的f = 0,则两条线在某一点接触。如果f1_1和f1_2相等或者f2_1和f2_2相等,则这些线不相交。如果f1_1和f1_2不等且 f2_1且f2_2不相等,则线段相交。根据您是否要将触摸的线条视为“相交”,您可以调整您的条件。
答案 12 :(得分:1)
我们也可以利用载体解决这个问题。
让我们将细分定义为[start, end]
。鉴于两个这样的段[A, B]
和[C, D]
都具有非零长度,我们可以选择一个端点作为参考点,以便我们得到三个向量:
x = 0
y = 1
p = A-C = [C[x]-A[x], C[y]-A[y]]
q = B-A = [B[x]-A[x], B[y]-A[y]]
r = D-C = [D[x]-C[x], D[y]-C[y]]
从那里,我们可以通过计算p + t*r = u*q
中的t和u来寻找交叉点。在稍微讨论一下这个等式后,我们得到:
t = (q[y]*p[x] - q[x]*p[y])/(q[x]*r[y] - q[y]*r[x])
u = (p[x] + t*r[x])/q[x]
因此,功能是:
def intersects(a, b):
p = [b[0][0]-a[0][0], b[0][1]-a[0][1]]
q = [a[1][0]-a[0][0], a[1][1]-a[0][1]]
r = [b[1][0]-b[0][0], b[1][1]-b[0][1]]
t = (q[1]*p[0] - q[0]*p[1])/(q[0]*r[1] - q[1]*r[0]) \
if (q[0]*r[1] - q[1]*r[0]) != 0 \
else (q[1]*p[0] - q[0]*p[1])
u = (p[0] + t*r[0])/q[0] \
if q[0] != 0 \
else (p[1] + t*r[1])/q[1]
return t >= 0 and t <= 1 and u >= 0 and u <= 1
答案 13 :(得分:0)
使用 OMG_Peanuts 解决方案,我将其翻译为SQL。 (HANA标量函数)
感谢OMG_Peanuts,它很棒。 我使用的是圆形地球,但是距离很小,所以我觉得还可以。
FUNCTION GA_INTERSECT" ( IN LAT_A1 DOUBLE,
IN LONG_A1 DOUBLE,
IN LAT_A2 DOUBLE,
IN LONG_A2 DOUBLE,
IN LAT_B1 DOUBLE,
IN LONG_B1 DOUBLE,
IN LAT_B2 DOUBLE,
IN LONG_B2 DOUBLE)
RETURNS RET_DOESINTERSECT DOUBLE
LANGUAGE SQLSCRIPT
SQL SECURITY INVOKER AS
BEGIN
DECLARE MA DOUBLE;
DECLARE MB DOUBLE;
DECLARE BA DOUBLE;
DECLARE BB DOUBLE;
DECLARE XA DOUBLE;
DECLARE MAX_MIN_X DOUBLE;
DECLARE MIN_MAX_X DOUBLE;
DECLARE DOESINTERSECT INTEGER;
SELECT 1 INTO DOESINTERSECT FROM DUMMY;
IF LAT_A2-LAT_A1 != 0 AND LAT_B2-LAT_B1 != 0 THEN
SELECT (LONG_A2 - LONG_A1)/(LAT_A2 - LAT_A1) INTO MA FROM DUMMY;
SELECT (LONG_B2 - LONG_B1)/(LAT_B2 - LAT_B1) INTO MB FROM DUMMY;
IF MA = MB THEN
SELECT 0 INTO DOESINTERSECT FROM DUMMY;
END IF;
END IF;
SELECT LONG_A1-MA*LAT_A1 INTO BA FROM DUMMY;
SELECT LONG_B1-MB*LAT_B1 INTO BB FROM DUMMY;
SELECT (BB - BA) / (MA - MB) INTO XA FROM DUMMY;
-- Max of Mins
IF LAT_A1 < LAT_A2 THEN -- MIN(LAT_A1, LAT_A2) = LAT_A1
IF LAT_B1 < LAT_B2 THEN -- MIN(LAT_B1, LAT_B2) = LAT_B1
IF LAT_A1 > LAT_B1 THEN -- MAX(LAT_A1, LAT_B1) = LAT_A1
SELECT LAT_A1 INTO MAX_MIN_X FROM DUMMY;
ELSE -- MAX(LAT_A1, LAT_B1) = LAT_B1
SELECT LAT_B1 INTO MAX_MIN_X FROM DUMMY;
END IF;
ELSEIF LAT_B2 < LAT_B1 THEN -- MIN(LAT_B1, LAT_B2) = LAT_B2
IF LAT_A1 > LAT_B2 THEN -- MAX(LAT_A1, LAT_B2) = LAT_A1
SELECT LAT_A1 INTO MAX_MIN_X FROM DUMMY;
ELSE -- MAX(LAT_A1, LAT_B2) = LAT_B2
SELECT LAT_B2 INTO MAX_MIN_X FROM DUMMY;
END IF;
END IF;
ELSEIF LAT_A2 < LAT_A1 THEN -- MIN(LAT_A1, LAT_A2) = LAT_A2
IF LAT_B1 < LAT_B2 THEN -- MIN(LAT_B1, LAT_B2) = LAT_B1
IF LAT_A2 > LAT_B1 THEN -- MAX(LAT_A2, LAT_B1) = LAT_A2
SELECT LAT_A2 INTO MAX_MIN_X FROM DUMMY;
ELSE -- MAX(LAT_A2, LAT_B1) = LAT_B1
SELECT LAT_B1 INTO MAX_MIN_X FROM DUMMY;
END IF;
ELSEIF LAT_B2 < LAT_B1 THEN -- MIN(LAT_B1, LAT_B2) = LAT_B2
IF LAT_A2 > LAT_B2 THEN -- MAX(LAT_A2, LAT_B2) = LAT_A2
SELECT LAT_A2 INTO MAX_MIN_X FROM DUMMY;
ELSE -- MAX(LAT_A2, LAT_B2) = LAT_B2
SELECT LAT_B2 INTO MAX_MIN_X FROM DUMMY;
END IF;
END IF;
END IF;
-- Min of Max
IF LAT_A1 > LAT_A2 THEN -- MAX(LAT_A1, LAT_A2) = LAT_A1
IF LAT_B1 > LAT_B2 THEN -- MAX(LAT_B1, LAT_B2) = LAT_B1
IF LAT_A1 < LAT_B1 THEN -- MIN(LAT_A1, LAT_B1) = LAT_A1
SELECT LAT_A1 INTO MIN_MAX_X FROM DUMMY;
ELSE -- MIN(LAT_A1, LAT_B1) = LAT_B1
SELECT LAT_B1 INTO MIN_MAX_X FROM DUMMY;
END IF;
ELSEIF LAT_B2 > LAT_B1 THEN -- MAX(LAT_B1, LAT_B2) = LAT_B2
IF LAT_A1 < LAT_B2 THEN -- MIN(LAT_A1, LAT_B2) = LAT_A1
SELECT LAT_A1 INTO MIN_MAX_X FROM DUMMY;
ELSE -- MIN(LAT_A1, LAT_B2) = LAT_B2
SELECT LAT_B2 INTO MIN_MAX_X FROM DUMMY;
END IF;
END IF;
ELSEIF LAT_A2 > LAT_A1 THEN -- MAX(LAT_A1, LAT_A2) = LAT_A2
IF LAT_B1 > LAT_B2 THEN -- MAX(LAT_B1, LAT_B2) = LAT_B1
IF LAT_A2 < LAT_B1 THEN -- MIN(LAT_A2, LAT_B1) = LAT_A2
SELECT LAT_A2 INTO MIN_MAX_X FROM DUMMY;
ELSE -- MIN(LAT_A2, LAT_B1) = LAT_B1
SELECT LAT_B1 INTO MIN_MAX_X FROM DUMMY;
END IF;
ELSEIF LAT_B2 > LAT_B1 THEN -- MAX(LAT_B1, LAT_B2) = LAT_B2
IF LAT_A2 < LAT_B2 THEN -- MIN(LAT_A2, LAT_B2) = LAT_A2
SELECT LAT_A2 INTO MIN_MAX_X FROM DUMMY;
ELSE -- MIN(LAT_A2, LAT_B2) = LAT_B2
SELECT LAT_B2 INTO MIN_MAX_X FROM DUMMY;
END IF;
END IF;
END IF;
IF XA < MAX_MIN_X OR
XA > MIN_MAX_X THEN
SELECT 0 INTO DOESINTERSECT FROM DUMMY;
END IF;
RET_DOESINTERSECT := :DOESINTERSECT;
END;
答案 14 :(得分:0)
上面的一种解决方案效果很好,我决定使用wxPython编写一个完整的演示程序。您应该能够像这样运行该程序:python“ 您的文件名”
# Click on the window to draw a line.
# The program will tell you if this and the other line intersect.
import wx
class Point:
def __init__(self, newX, newY):
self.x = newX
self.y = newY
app = wx.App()
frame = wx.Frame(None, wx.ID_ANY, "Main")
p1 = Point(90,200)
p2 = Point(150,80)
mp = Point(0,0) # mouse point
highestX = 0
def ccw(A,B,C):
return (C.y-A.y) * (B.x-A.x) > (B.y-A.y) * (C.x-A.x)
# Return true if line segments AB and CD intersect
def intersect(A,B,C,D):
return ccw(A,C,D) != ccw(B,C,D) and ccw(A,B,C) != ccw(A,B,D)
def is_intersection(p1, p2, p3, p4):
return intersect(p1, p2, p3, p4)
def drawIntersection(pc):
mp2 = Point(highestX, mp.y)
if is_intersection(p1, p2, mp, mp2):
pc.DrawText("intersection", 10, 10)
else:
pc.DrawText("no intersection", 10, 10)
def do_paint(evt):
pc = wx.PaintDC(frame)
pc.DrawLine(p1.x, p1.y, p2.x, p2.y)
pc.DrawLine(mp.x, mp.y, highestX, mp.y)
drawIntersection(pc)
def do_left_mouse(evt):
global mp, highestX
point = evt.GetPosition()
mp = Point(point[0], point[1])
highestX = frame.Size[0]
frame.Refresh()
frame.Bind(wx.EVT_PAINT, do_paint)
frame.Bind(wx.EVT_LEFT_DOWN, do_left_mouse)
frame.Show()
app.MainLoop()
答案 15 :(得分:0)
使用Shapely方法的intersects
库很容易检查线段是否相交:
from shapely.geometry import LineString
line = LineString([(0, 0), (1, 1)])
other = LineString([(0, 1), (1, 0)])
print(line.intersects(other))
# True
line = LineString([(0, 0), (1, 1)])
other = LineString([(0, 1), (1, 2)])
print(line.intersects(other))
# False
答案 16 :(得分:0)
这是我检查线和交叉点的方法。让我们使用x1到x4和y1到y4
Segment1 = {(X1, Y1), (X2, Y2)}
Segment2 = {(X3, Y3), (X4, Y4)}
然后我们需要一些向量来表示它们
dx1 = X2 - X1
dx2 = X4 - X4
dy1 = Y2 - Y1
dy2 = Y4 - Y3
现在我们来看行列式
det = dx1 * dy2 - dx2 * dy1
如果行列式为0.0,则线段是平行的。这可能意味着它们重叠。如果它们仅在端点处重叠,则存在一个交集解。否则,将有无限的解决方案。有无数种解决方案,您的交汇点是什么?因此,这是一个有趣的特殊情况。如果您提前知道线不能重叠,那么您可以检查det == 0.0
是否正确,如果是这样,只需说它们不相交即可完成。否则,让我们继续
dx3 = X3 - X1
dy3 = Y3 - Y1
det1 = dx1 * dy3 - dx3 * dy1
det2 = dx2 * dy3 - dx3 * dy2
现在,如果det,det1和det2都为零,则您的线是共线的并且可能重叠。如果det为零,但det1或det2不是,则它们不是共线的,而是平行的,因此没有交集。因此,如果det为零,现在剩下的是一维问题,而不是二维问题。我们将需要检查两种方法之一,具体取决于dx1是否为零(因此我们可以避免被零除)。如果dx1为零,则使用y值而不是下面的x进行相同的逻辑。
s = X3 / dx1
t = X4 / dx1
这将计算两个缩放器,这样,如果我们按s缩放矢量(dx1,dy1),则得到点(x3,y3),而得到t则得到(x4,y4)。因此,如果s或t在0.0到1.0之间,则点3或4位于我们的第一行。负数表示该点在向量的起点之后,而> 1.0表示该点在向量的终点之前。 0.0表示它在(x1,y1),1.0表示它在(x2,y2)。如果s和t均<0.0或均> 1.0,则它们不相交。并处理平行线的特殊情况。
现在,如果det != 0.0
,那么
s = det1 / det
t = det2 / det
if (s < 0.0 || s > 1.0 || t < 0.0 || t > 1.0)
return false // no intersect
这类似于我们上面所做的。现在,如果我们通过上述测试,则线段相交,我们可以很容易地计算出相交,如下所示:
Ix = X1 + t * dx1
Iy = Y1 + t * dy1
如果您想更深入地研究数学运算,请查看克莱默法则。
答案 17 :(得分:0)
我以为我会提供一个很好的Swift解决方案:
struct Pt {
var x: Double
var y: Double
}
struct LineSegment {
var p1: Pt
var p2: Pt
}
func doLineSegmentsIntersect(ls1: LineSegment, ls2: LineSegment) -> Bool {
if (ls1.p2.x-ls1.p1.x == 0) { //handle vertical segment1
if (ls2.p2.x-ls2.p1.x == 0) {
//both lines are vertical and parallel
return false
}
let x = ls1.p1.x
let slope2 = (ls2.p2.y-ls2.p1.y)/(ls2.p2.x-ls2.p1.x)
let c2 = ls2.p1.y-slope2*ls2.p1.x
let y = x*slope2+c2 // y intersection point
return (y > ls1.p1.y && x < ls1.p2.y) || (y > ls1.p2.y && y < ls1.p1.y) // check if y is between y1,y2 in segment1
}
if (ls2.p2.x-ls2.p1.x == 0) { //handle vertical segment2
let x = ls2.p1.x
let slope1 = (ls1.p2.y-ls1.p1.y)/(ls1.p2.x-ls1.p1.x)
let c1 = ls1.p1.y-slope1*ls1.p1.x
let y = x*slope1+c1 // y intersection point
return (y > ls2.p1.y && x < ls2.p2.y) || (y > ls2.p2.y && y < ls2.p1.y) // validate that y is between y1,y2 in segment2
}
let slope1 = (ls1.p2.y-ls1.p1.y)/(ls1.p2.x-ls1.p1.x)
let slope2 = (ls2.p2.y-ls2.p1.y)/(ls2.p2.x-ls2.p1.x)
if (slope1 == slope2) { //segments are parallel
return false
}
let c1 = ls1.p1.y-slope1*ls1.p1.x
let c2 = ls2.p1.y-slope2*ls2.p1.x
let x = (c2-c1)/(slope1-slope2)
return (((x > ls1.p1.x && x < ls1.p2.x) || (x > ls1.p2.x && x < ls1.p1.x)) &&
((x > ls2.p1.x && x < ls2.p2.x) || (x > ls2.p2.x && x < ls2.p1.x)))
//validate that x is between x1,x2 in both segments
}
答案 18 :(得分:0)
在JAVA中实施。然而,它似乎不适用于共线线(也就是彼此存在的线段L1(0,0)(10,10)L2(1,1)(2,2)
public class TestCode
{
public class Point
{
public double x = 0;
public double y = 0;
public Point(){}
}
public class Line
{
public Point p1, p2;
public Line( double x1, double y1, double x2, double y2)
{
p1 = new Point();
p2 = new Point();
p1.x = x1;
p1.y = y1;
p2.x = x2;
p2.y = y2;
}
}
//line segments
private static Line s1;
private static Line s2;
public TestCode()
{
s1 = new Line(0,0,0,10);
s2 = new Line(-1,0,0,10);
}
public TestCode(double x1, double y1,
double x2, double y2,
double x3, double y3,
double x4, double y4)
{
s1 = new Line(x1,y1, x2,y2);
s2 = new Line(x3,y3, x4,y4);
}
public static void main(String args[])
{
TestCode code = null;
////////////////////////////
code = new TestCode(0,0,0,10,
0,1,0,5);
if( intersect(code) )
{ System.out.println( "OK COLINEAR: INTERSECTS" ); }
else
{ System.out.println( "ERROR COLINEAR: DO NOT INTERSECT" ); }
////////////////////////////
code = new TestCode(0,0,0,10,
0,1,0,10);
if( intersect(code) )
{ System.out.println( "OK COLINEAR: INTERSECTS" ); }
else
{ System.out.println( "ERROR COLINEAR: DO NOT INTERSECT" ); }
////////////////////////////
code = new TestCode(0,0,10,0,
5,0,15,0);
if( intersect(code) )
{ System.out.println( "OK COLINEAR: INTERSECTS" ); }
else
{ System.out.println( "ERROR COLINEAR: DO NOT INTERSECT" ); }
////////////////////////////
code = new TestCode(0,0,10,0,
0,0,15,0);
if( intersect(code) )
{ System.out.println( "OK COLINEAR: INTERSECTS" ); }
else
{ System.out.println( "ERROR COLINEAR: DO NOT INTERSECT" ); }
////////////////////////////
code = new TestCode(0,0,10,10,
1,1,5,5);
if( intersect(code) )
{ System.out.println( "OK COLINEAR: INTERSECTS" ); }
else
{ System.out.println( "ERROR COLINEAR: DO NOT INTERSECT" ); }
////////////////////////////
code = new TestCode(0,0,0,10,
-1,-1,0,10);
if( intersect(code) )
{ System.out.println( "OK SLOPE END: INTERSECTS" ); }
else
{ System.out.println( "ERROR SLOPE END: DO NOT INTERSECT" ); }
////////////////////////////
code = new TestCode(-10,-10,10,10,
-10,10,10,-10);
if( intersect(code) )
{ System.out.println( "OK SLOPE Intersect(0,0): INTERSECTS" ); }
else
{ System.out.println( "ERROR SLOPE Intersect(0,0): DO NOT INTERSECT" ); }
////////////////////////////
code = new TestCode(-10,-10,10,10,
-3,-2,50,-2);
if( intersect(code) )
{ System.out.println( "OK SLOPE Line2 VERTIAL: INTERSECTS" ); }
else
{ System.out.println( "ERROR SLOPE Line2 VERTICAL: DO NOT INTERSECT" ); }
////////////////////////////
code = new TestCode(-10,-10,10,10,
50,-2,-3,-2);
if( intersect(code) )
{ System.out.println( "OK SLOPE Line2 (reversed) VERTIAL: INTERSECTS" ); }
else
{ System.out.println( "ERROR SLOPE Line2 (reversed) VERTICAL: DO NOT INTERSECT" ); }
////////////////////////////
code = new TestCode(0,0,0,10,
1,0,1,10);
if( intersect(code) )
{ System.out.println( "ERROR PARALLEL VERTICAL: INTERSECTS" ); }
else
{ System.out.println( "OK PARALLEL VERTICAL: DO NOT INTERSECT" ); }
////////////////////////////
code = new TestCode(0,2,10,2,
0,10,10,10);
if( intersect(code) )
{ System.out.println( "ERROR PARALLEL HORIZONTAL: INTERSECTS" ); }
else
{ System.out.println( "OK PARALLEL HORIZONTAL: DO NOT INTERSECT" ); }
////////////////////////////
code = new TestCode(0,10,5,13.75,
0,18.75,10,15);
if( intersect(code) )
{ System.out.println( "ERROR PARALLEL SLOPE=.75: INTERSECTS" ); }
else
{ System.out.println( "OK PARALLEL SLOPE=.75: DO NOT INTERSECT" ); }
////////////////////////////
code = new TestCode(0,0,1,1,
2,-1,2,10);
if( intersect(code) )
{ System.out.println( "ERROR SEPERATE SEGMENTS: INTERSECTS" ); }
else
{ System.out.println( "OK SEPERATE SEGMENTS: DO NOT INTERSECT" ); }
////////////////////////////
code = new TestCode(0,0,1,1,
-1,-10,-5,10);
if( intersect(code) )
{ System.out.println( "ERROR SEPERATE SEGMENTS 2: INTERSECTS" ); }
else
{ System.out.println( "OK SEPERATE SEGMENTS 2: DO NOT INTERSECT" ); }
}
public static boolean intersect( TestCode code )
{
return intersect( code.s1, code.s2);
}
public static boolean intersect( Line line1, Line line2 )
{
double i1min = Math.min(line1.p1.x, line1.p2.x);
double i1max = Math.max(line1.p1.x, line1.p2.x);
double i2min = Math.min(line2.p1.x, line2.p2.x);
double i2max = Math.max(line2.p1.x, line2.p2.x);
double iamax = Math.max(i1min, i2min);
double iamin = Math.min(i1max, i2max);
if( Math.max(line1.p1.x, line1.p2.x) < Math.min(line2.p1.x, line2.p2.x) )
return false;
double m1 = (line1.p2.y - line1.p1.y) / (line1.p2.x - line1.p1.x );
double m2 = (line2.p2.y - line2.p1.y) / (line2.p2.x - line2.p1.x );
if( m1 == m2 )
return false;
//b1 = line1[0][1] - m1 * line1[0][0]
//b2 = line2[0][1] - m2 * line2[0][0]
double b1 = line1.p1.y - m1 * line1.p1.x;
double b2 = line2.p1.y - m2 * line2.p1.x;
double x1 = (b2 - b1) / (m1 - m2);
if( (x1 < Math.max(i1min, i2min)) || (x1 > Math.min(i1max, i2max)) )
return false;
return true;
}
}
到目前为止的输出是
ERROR COLINEAR: DO NOT INTERSECT
ERROR COLINEAR: DO NOT INTERSECT
ERROR COLINEAR: DO NOT INTERSECT
ERROR COLINEAR: DO NOT INTERSECT
ERROR COLINEAR: DO NOT INTERSECT
OK SLOPE END: INTERSECTS
OK SLOPE Intersect(0,0): INTERSECTS
OK SLOPE Line2 VERTIAL: INTERSECTS
OK SLOPE Line2 (reversed) VERTIAL: INTERSECTS
OK PARALLEL VERTICAL: DO NOT INTERSECT
OK PARALLEL HORIZONTAL: DO NOT INTERSECT
OK PARALLEL SLOPE=.75: DO NOT INTERSECT
OK SEPERATE SEGMENTS: DO NOT INTERSECT
OK SEPERATE SEGMENTS 2: DO NOT INTERSECT
答案 19 :(得分:0)
这就是我对AS3的看法,对python知之甚少,但概念就在那里
public function getIntersectingPointF($A:Point, $B:Point, $C:Point, $D:Point):Number {
var A:Point = $A.clone();
var B:Point = $B.clone();
var C:Point = $C.clone();
var D:Point = $D.clone();
var f_ab:Number = (D.x - C.x) * (A.y - C.y) - (D.y - C.y) * (A.x - C.x);
// are lines parallel
if (f_ab == 0) { return Infinity };
var f_cd:Number = (B.x - A.x) * (A.y - C.y) - (B.y - A.y) * (A.x - C.x);
var f_d:Number = (D.y - C.y) * (B.x - A.x) - (D.x - C.x) * (B.y - A.y);
var f1:Number = f_ab/f_d
var f2:Number = f_cd / f_d
if (f1 == Infinity || f1 <= 0 || f1 >= 1) { return Infinity };
if (f2 == Infinity || f2 <= 0 || f2 >= 1) { return Infinity };
return f1;
}
public function getIntersectingPoint($A:Point, $B:Point, $C:Point, $D:Point):Point
{
var f:Number = getIntersectingPointF($A, $B, $C, $D);
if (f == Infinity || f <= 0 || f >= 1) { return null };
var retPoint:Point = Point.interpolate($A, $B, 1 - f);
return retPoint.clone();
}
答案 20 :(得分:0)
计算放置在线段上的线的交点(这基本上意味着求解线性方程组),然后检查它是否在段的起点和终点之间。
答案 21 :(得分:0)
如果您的数据定义了行,您只需要证明它们不是并行的。为此,您可以计算
alpha = float(y2 - y1) / (x2 - x1).
如果Line1和Line2的系数相等,则表示该线是平行的。如果不是,则意味着它们将相交。
如果它们是平行的,那么你必须证明它们不一样。为此,你计算
beta = y1 - alpha*x1
如果第1行和第2行的beta相同,则表示相等的行相交
如果它们是细分市场,您仍然必须按照上述每条线计算alpha和beta。然后你必须检查(beta1 - beta2)/(alpha1 - alpha2)是否大于Min(x1_line1,x2_line1)并且小于Max(x1_line1,x2_line1)
答案 22 :(得分:-2)
已解决但仍为何不使用python ......:)
def islineintersect(line1, line2):
i1 = [min(line1[0][0], line1[1][0]), max(line1[0][0], line1[1][0])]
i2 = [min(line2[0][0], line2[1][0]), max(line2[0][0], line2[1][0])]
ia = [max(i1[0], i2[0]), min(i1[1], i2[1])]
if max(line1[0][0], line1[1][0]) < min(line2[0][0], line2[1][0]):
return False
m1 = (line1[1][1] - line1[0][1]) * 1. / (line1[1][0] - line1[0][0]) * 1.
m2 = (line2[1][1] - line2[0][1]) * 1. / (line2[1][0] - line2[0][0]) * 1.
if m1 == m2:
return False
b1 = line1[0][1] - m1 * line1[0][0]
b2 = line2[0][1] - m2 * line2[0][0]
x1 = (b2 - b1) / (m1 - m2)
if (x1 < max(i1[0], i2[0])) or (x1 > min(i1[1], i2[1])):
return False
return True
此:
print islineintersect([(15, 20), (100, 200)], [(210, 5), (23, 119)])
输出:
True
而且:
print islineintersect([(15, 20), (100, 200)], [(-1, -5), (-5, -5)])
输出:
False