我试图同时运行多个CMT trackers。出于这个原因,我设置了一个线程池:
import argparse
import cv2
from multiprocessing import Pool
import numpy as np
import os
import sys
import time
import VARtracker
import util
CMT1 = VARtracker.CMT()
... # code lines removed
# Clean up
cv2.destroyAllWindows()
if args.inputpath is not None:
# If a path to a file was given, assume it is a single video file
if os.path.isfile(args.inputpath):
cap = cv2.VideoCapture(args.inputpath)
# Skip first frames if required
if args.skip is not None:
cap.set(cv2.cv.CV_CAP_PROP_POS_FRAMES, args.skip)
# Otherwise assume it is a format string for reading images
else:
cap = util.FileVideoCapture(args.inputpath)
# Skip first frames if required
if args.skip is not None:
cap.frame = 1 + args.skip
# Check if videocapture is working
if not cap.isOpened():
print 'Unable to open video input.'
sys.exit(1)
# Read first frame
status, im0 = cap.read()
im_gray0 = cv2.cvtColor(im0, cv2.COLOR_BGR2GRAY)
im_draw = np.copy(im0)
# Getting initial bounding boxes
tl1 = [405, 160]
br1 = [450, 275]
VARtracker.initialise(CMT1, im_gray0, tl1, br1)
frame = 1
while True:
pool = Pool(processes=4)
print frame
# Read image
status, im = cap.read()
if not status:
break
im_gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
im_draw = np.copy(im)
tic = time.time()
# Serial approach
#res1 = VARtracker.process_frame(CMT1, im_gray)
# Parallel approach
res1 = pool.apply_async(VARtracker.process_frame, (CMT2, im_gray))
pool.close()
pool.join()
res1 = res1.get()
toc = time.time()
# Display results
if res1.has_result:
cv2.line(im_draw, res1.tl, res1.tr, (255, 0, 0), 4)
cv2.line(im_draw, res1.tr, res1.br, (255, 0, 0), 4)
cv2.line(im_draw, res1.br, res1.bl, (255, 0, 0), 4)
cv2.line(im_draw, res1.bl, res1.tl, (255, 0, 0), 4)
if not args.quiet:
cv2.imshow('main', im_draw)
cv2.waitKey(pause_time)
# Remember image
im_prev = im_gray
frame += 1
每当我评论串行方法并尝试使用线程(并行aproach )时,我都会遇到以下错误:
追踪(最近一次呼叫最后一次):
文件" /home/rafael/GIT/CMT-Tracker/VaretoCMT/VARmain.py",第128行,模块res1 = res1.get()
File" /usr/lib/python2.7/multiprocessing/pool.py" ;,第558行,在get raise self._value
cPickle.PicklingError:不能发现:属性查找cv2.BRISK失败
VARmain.py, VARtracker.py and util.py上可能遇到其他文件。
我已经尝试了很多方法,但我仍然没有找到克服Python限制的方法。我发现我不能序列化类方法,只能序列化函数。如果可能的话,我想用Python标准库来解决它。
答案 0 :(得分:4)
我设法解决了这个问题。感谢@Matt和@Yamaneko。 基本上,我将读取图像的块移动到worker函数中。因此,如果池大小= 6 并且有六个边界框,则每个帧将被读取六次(在每个工作者内)。这是我找到的唯一方法。
可以找到当前版本here。
user_friends
答案 1 :(得分:3)
在你的课程周围试试这个代码段(这不是我的代码,可归功于Steven Bethard) - 这是一个解决类的解决方法;多处理模块使用pickle将作业发送给worker:
def _pickle_method(method):
func_name = method.im_func.__name__
obj = method.im_self
cls = method.im_class
return _unpickle_method, (func_name, obj, cls)
def _unpickle_method(func_name, obj, cls):
for cls in cls.mro():
try:
func = cls.__dict__[func_name]
except KeyError:
pass
else:
break
return func.__get__(obj, cls)
import copy_reg
import types
copy_reg.pickle(types.MethodType, _pickle_method, _unpickle_method)
将multiprocessing
与Can't pickle <type 'instancemethod'> when using python's multiprocessing Pool.map()
不是说这很容易转换。如果你真的想要多线程,我建议使用OpenMP进行Cython。您只需重写需要与nogil
语句并行的程序部分和from cython.parallel cimport prange
并行循环......