我有一个我从HDF5文件中读取的数组,它是一元组的一维数组。它的类型是:
[('cycle', '<u2'), ('dxn', 'i1'), ('i (mA)', '<f4'), ('V', '<f4'), ('R(Ohm)', '<f4')]
我想将它从n x 1数组转换为np.float类型的(n / 5)x 5数组。
我尝试了np.astype,但这不起作用 - 它只返回n个元素。有什么简单的方法吗?
答案 0 :(得分:0)
dtypes的混合使得这种转换比平时更加棘手。最后的答案是,将字段复制到目标数组具有速度和通用性的组合。
Convert structured array to regular NumPy array - 被建议为重复,但该案例包含所有浮点字段。
让我们构建一个样本:
In [850]: dt
Out[850]: dtype([('cycle', '<u2'), ('dxn', 'i1'), ('i (mA)', '<f4'), ('V', '<f4'), ('R(Ohm)', '<f4')])
In [851]: x=np.zeros((3,),dt)
In [852]: x['cycle']=[0,10,23]
In [853]: x['dxn']=[3,2,2]
In [854]: x['V']=[1,1,1]
In [855]: x
Out[855]:
array([(0, 3, 0.0, 1.0, 0.0), (10, 2, 0.0, 1.0, 0.0),
(23, 2, 0.0, 1.0, 0.0)],
dtype=[('cycle', '<u2'), ('dxn', 'i1'), ('i (mA)', '<f4'), ('V', '<f4'), ('R(Ohm)', '<f4')])
我们可以按照该链接中建议的方式查看3个浮点字段:
In [856]: dt1=np.dtype([('f0','float32',(3))])
In [857]: y=x[list(x.dtype.names[2:])].view(dt1)
# or x[list(x.dtype.names[2:])].view((np.float32, 3))
In [858]: y
Out[858]:
array([([0.0, 1.0, 0.0],), ([0.0, 1.0, 0.0],), ([0.0, 1.0, 0.0],)],
dtype=[('f0', '<f4', (3,))])
In [859]: y['f0']
Out[859]:
array([[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.]], dtype=float32)
但如果我想更改所有值,我需要制作y
副本。不允许一次写入多个字段。
In [863]: y=x[list(x.dtype.names[2:])].view(dt1).copy()
In [864]: y['f0']=np.arange(9.).reshape(3,3)
带有一个dtype的 view
不捕获行结构;我们必须用reshape
添加回来。具有dt1
形状的(3,)
可以解决该问题。
In [867]: x[list(x.dtype.names[2:])].view(np.float32)
Out[867]: array([ 0., 1., 0., 0., 1., 0., 0., 1., 0.], dtype=float32)
https://stackoverflow.com/a/5957455/901925建议浏览一个列表。
In [868]: x.tolist()
Out[868]: [(0, 3, 0.0, 1.0, 0.0), (10, 2, 0.0, 1.0, 0.0), (23, 2, 0.0, 1.0, 0.0)]
In [869]: np.array(x.tolist())
Out[869]:
array([[ 0., 3., 0., 1., 0.],
[ 10., 2., 0., 1., 0.],
[ 23., 2., 0., 1., 0.]])
可以使用astype
转换单个字段:
In [878]: x['cycle'].astype(np.float32)
Out[878]: array([ 0., 10., 23.], dtype=float32)
In [879]: x['dxn'].astype(np.float32)
Out[879]: array([ 3., 2., 2.], dtype=float32)
但不是多个字段:
In [880]: x.astype(np.float32)
Out[880]: array([ 0., 10., 23.], dtype=float32)
recfunctions
帮助操纵结构化数组(并重新排列)
from numpy.lib import recfunctions
其中许多构造了一个新的空结构,并按字段复制值。在这种情况下的等价物:
In [890]: z=np.zeros((3,5),np.float32)
In [891]: for i in range(5):
.....: z[:,i] = x[x.dtype.names[i]]
In [892]: z
Out[892]:
array([[ 0., 3., 0., 1., 0.],
[ 10., 2., 0., 1., 0.],
[ 23., 2., 0., 1., 0.]], dtype=float32)
在这个小案例中,它比np.array(x.tolist())
慢一点。但对于30000条记录来说,这要快得多。
通常,结构化数组中的字段比字段多得多,因此对字段的迭代速度并不慢。