我有一组png图像,我想用Python和相关工具处理。每个图像代表一个已知尺寸的物理对象。
在每个图像中,在特定像素/物理位置处存在对象的特定特征。每张图片的位置都不同。
我想在给定图像上施加极坐标系,原点位于此要素的位置。
我希望能够获得以下信息: - 对于给定的极角,图像强度作为径向位置的函数 - 当在所有极角上平均值时,图像强度作为径向位置的函数。
我在Python编程和在NumPy和SciPy中使用许多函数方面经验丰富,但在图像分析方面我是一个完整的新手。
如果您有任何建议可以解决这个问题,我将不胜感激。
谢谢。
答案 0 :(得分:38)
你所描述的并不完全是传统意义上的图像处理,但是使用numpy等相当容易。
这是一个相当大的例子,做了你提到的一些事情,让你指向正确的方向......请注意,示例图像都显示原点在图像中心的结果,但函数采用原点争论,所以你应该能够直接适应你的目的。
import numpy as np
import scipy as sp
import scipy.ndimage
import Image
import matplotlib.pyplot as plt
def main():
im = Image.open('mri_demo.png')
im = im.convert('RGB')
data = np.array(im)
plot_polar_image(data, origin=None)
plot_directional_intensity(data, origin=None)
plt.show()
def plot_directional_intensity(data, origin=None):
"""Makes a cicular histogram showing average intensity binned by direction
from "origin" for each band in "data" (a 3D numpy array). "origin" defaults
to the center of the image."""
def intensity_rose(theta, band, color):
theta, band = theta.flatten(), band.flatten()
intensities, theta_bins = bin_by(band, theta)
mean_intensity = map(np.mean, intensities)
width = np.diff(theta_bins)[0]
plt.bar(theta_bins, mean_intensity, width=width, color=color)
plt.xlabel(color + ' Band')
plt.yticks([])
# Make cartesian coordinates for the pixel indicies
# (The origin defaults to the center of the image)
x, y = index_coords(data, origin)
# Convert the pixel indices into polar coords.
r, theta = cart2polar(x, y)
# Unpack bands of the image
red, green, blue = data.T
# Plot...
plt.figure()
plt.subplot(2,2,1, projection='polar')
intensity_rose(theta, red, 'Red')
plt.subplot(2,2,2, projection='polar')
intensity_rose(theta, green, 'Green')
plt.subplot(2,1,2, projection='polar')
intensity_rose(theta, blue, 'Blue')
plt.suptitle('Average intensity as a function of direction')
def plot_polar_image(data, origin=None):
"""Plots an image reprojected into polar coordinages with the origin
at "origin" (a tuple of (x0, y0), defaults to the center of the image)"""
polar_grid, r, theta = reproject_image_into_polar(data, origin)
plt.figure()
plt.imshow(polar_grid, extent=(theta.min(), theta.max(), r.max(), r.min()))
plt.axis('auto')
plt.ylim(plt.ylim()[::-1])
plt.xlabel('Theta Coordinate (radians)')
plt.ylabel('R Coordinate (pixels)')
plt.title('Image in Polar Coordinates')
def index_coords(data, origin=None):
"""Creates x & y coords for the indicies in a numpy array "data".
"origin" defaults to the center of the image. Specify origin=(0,0)
to set the origin to the lower left corner of the image."""
ny, nx = data.shape[:2]
if origin is None:
origin_x, origin_y = nx // 2, ny // 2
else:
origin_x, origin_y = origin
x, y = np.meshgrid(np.arange(nx), np.arange(ny))
x -= origin_x
y -= origin_y
return x, y
def cart2polar(x, y):
r = np.sqrt(x**2 + y**2)
theta = np.arctan2(y, x)
return r, theta
def polar2cart(r, theta):
x = r * np.cos(theta)
y = r * np.sin(theta)
return x, y
def bin_by(x, y, nbins=30):
"""Bin x by y, given paired observations of x & y.
Returns the binned "x" values and the left edges of the bins."""
bins = np.linspace(y.min(), y.max(), nbins+1)
# To avoid extra bin for the max value
bins[-1] += 1
indicies = np.digitize(y, bins)
output = []
for i in xrange(1, len(bins)):
output.append(x[indicies==i])
# Just return the left edges of the bins
bins = bins[:-1]
return output, bins
def reproject_image_into_polar(data, origin=None):
"""Reprojects a 3D numpy array ("data") into a polar coordinate system.
"origin" is a tuple of (x0, y0) and defaults to the center of the image."""
ny, nx = data.shape[:2]
if origin is None:
origin = (nx//2, ny//2)
# Determine that the min and max r and theta coords will be...
x, y = index_coords(data, origin=origin)
r, theta = cart2polar(x, y)
# Make a regular (in polar space) grid based on the min and max r & theta
r_i = np.linspace(r.min(), r.max(), nx)
theta_i = np.linspace(theta.min(), theta.max(), ny)
theta_grid, r_grid = np.meshgrid(theta_i, r_i)
# Project the r and theta grid back into pixel coordinates
xi, yi = polar2cart(r_grid, theta_grid)
xi += origin[0] # We need to shift the origin back to
yi += origin[1] # back to the lower-left corner...
xi, yi = xi.flatten(), yi.flatten()
coords = np.vstack((xi, yi)) # (map_coordinates requires a 2xn array)
# Reproject each band individually and the restack
# (uses less memory than reprojection the 3-dimensional array in one step)
bands = []
for band in data.T:
zi = sp.ndimage.map_coordinates(band, coords, order=1)
bands.append(zi.reshape((nx, ny)))
output = np.dstack(bands)
return output, r_i, theta_i
if __name__ == '__main__':
main()
原始图片:
投射到极坐标中:
强度作为图像中心方向的函数:
答案 1 :(得分:3)
这是我使用scipy的geometric_transform方法:
topolar.py
import numpy as np
from scipy.ndimage.interpolation import geometric_transform
def topolar(img, order=1):
"""
Transform img to its polar coordinate representation.
order: int, default 1
Specify the spline interpolation order.
High orders may be slow for large images.
"""
# max_radius is the length of the diagonal
# from a corner to the mid-point of img.
max_radius = 0.5*np.linalg.norm( img.shape )
def transform(coords):
# Put coord[1] in the interval, [-pi, pi]
theta = 2*np.pi*coords[1] / (img.shape[1] - 1.)
# Then map it to the interval [0, max_radius].
#radius = float(img.shape[0]-coords[0]) / img.shape[0] * max_radius
radius = max_radius * coords[0] / img.shape[0]
i = 0.5*img.shape[0] - radius*np.sin(theta)
j = radius*np.cos(theta) + 0.5*img.shape[1]
return i,j
polar = geometric_transform(img, transform, order=order)
rads = max_radius * np.linspace(0,1,img.shape[0])
angs = np.linspace(0, 2*np.pi, img.shape[1])
return polar, (rads, angs)
这是一些测试用法:
testpolar.py
from topolar import topolar
from skimage.data import chelsea
import matplotlib.pyplot as plt
img = chelsea()[...,0] / 255.
pol, (rads,angs) = topolar(img)
fig,ax = plt.subplots(2,1,figsize=(6,8))
ax[0].imshow(img, cmap=plt.cm.gray, interpolation='bicubic')
ax[1].imshow(pol, cmap=plt.cm.gray, interpolation='bicubic')
ax[1].set_ylabel("Radius in pixels")
ax[1].set_yticks(range(0, img.shape[0]+1, 50))
ax[1].set_yticklabels(rads[::50].round().astype(int))
ax[1].set_xlabel("Angle in degrees")
ax[1].set_xticks(range(0, img.shape[1]+1, 50))
ax[1].set_xticklabels((angs[::50]*180/3.14159).round().astype(int))
plt.show()
...和输出: