我使用RANSAC算法查找单应性和包装透视操作以将其应用于图像。这是代码
MIN_MATCH_COUNT = 10
img1 = cv2.imread('bus1.jpg',0)
img2 = cv2.imread('bus2.jpg',0)
sift = cv2.SIFT()
kp1, des1 = sift.detectAndCompute(img1,None)
kp2, des2 = sift.detectAndCompute(img2,None)
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
search_params = dict(checks = 50)
flann = cv2.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(des1,des2,k=2)
good = []
for m,n in matches:
if m.distance < 0.7*n.distance:
good.append(m)
if len(good)>MIN_MATCH_COUNT:
src_pts = np.float32([ kp1[m.queryIdx].pt for m in good ]).reshape(-1,1,2)
dst_pts = np.float32([ kp2[m.trainIdx].pt for m in good ]).reshape(-1,1,2)
M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC,5.0)
h,w = img1.shape
result=cv2.warpPerspective(img2,M,(w,h))
cv2.imshow('result',result)
cv2.waitKey(0)
cv2.destroyAllWindows()
输出没有显示整个图像。有什么不对? 如何包装图像?
答案 0 :(得分:0)
你正在计算从img1到img2的单应性,但是你将它应用于img2而不是img1。
将result = cv2.warpPerspective(img2, M, (w,h))
更改为result = cv2.warpPerspective(img1, M, (2 * w, h))
(2 * w是因为结果中包含较大部分的扭曲图像)