使用fmincon进行约束最小化

时间:2016-06-10 17:41:37

标签: matlab optimization constraints

我想使用fmincon解决约束最小化问题。但约束是根据f(x_0)<a这样的函数定义的,其中x_0是问题的解决方案。有可能吗?

在文档中,该示例仅包含此x_0<a表单。

代码:

f_obj = @(x)var_zcors(x,t_cw);
opt_theta = fminbnd(f_obj,0,360);

现在,x应该约束f_constraint(x)< a

更新(来自@Phil Goddard的回答):

f_obj = @(x)var_zcors(x,t_cw);
f_nl = @(x)deal(f_constraint(x)-a,[]);
x0 = 180; % or whatever is appropriate
opt_theta = fmincon(f_obj,x0,[],[],[],[],0,360,f_nl);

在上面的代码中说f_constraint会返回一个向量[x_min y_max]而不是标量。我想指定以下约束:

x_min>b
y_max<a

实现这一目标的可行方法是什么?

1 个答案:

答案 0 :(得分:6)

您有非线性约束,因此需要使用非线性约束输入fmincon。也就是说,

f_obj = @(x)var_zcors(x,t_cw);
f_nl = @(x)deal(f_constraint(x)-a,[]);
x0 = 180; % or whatever is appropriate
opt_theta = fmincon(f_obj,x0,[],[],[],[],0,360,f_nl);

如果您有多个(非线性)约束,那么根据文档中的示例,您可以编写一个函数来返回约束向量。在您的情况下,您希望在单独的文件中编写函数,如下所示:

function [c,ceq] = my_nonlinear_constraints(x,ab)

% define the non-linear inequality constraints
% (This assumes that ab is a 2 element vector containing your a and b
% variables.)
[x_min,y_max] = f_constraint(x);
c = nan(2,1);
c(1) = -x_min+ab(2); % this is x_min>b
c(2) = y_max-ab(1);  % this is y_max<a

% There are no non-linear equality constraints, but this is required
ceq = [];

然后,要执行优化,您需要

% Variables a and b must be defined prior to this.
f_obj = @(x)var_zcors(x,t_cw);
f_nl = @(x)my_nonlinear_constraints(x,[a b]);
x0 = 180; % or whatever is appropriate
opt_theta = fmincon(f_obj,x0,[],[],[],[],0,360,f_nl);