批量阅读Cifar10数据集

时间:2016-05-29 16:29:56

标签: python-3.x machine-learning computer-vision batch-processing

我正在尝试阅读从https://www.cs.toronto.edu/~kriz/cifar.html>批量提供的CIFAR10数据集。我试图将它放在数据框中使用泡菜和读取数据'一部分。但是我收到了这个错误。

KeyError                                  Traceback (most recent call last)
<ipython-input-24-8758b7a31925> in <module>()
----> 1 unpickle('datasets/cifar-10-batches-py/test_batch')

<ipython-input-23-04002b89d842> in unpickle(file)
      3     fo = open(file, 'rb')
      4     dict = pickle.load(fo, encoding ='bytes')
----> 5     X = dict['data']
      6     fo.close()
      7     return dict

KeyError:&#39;数据&#39;。

我正在使用ipython,这是我的代码:

def unpickle(file):

 fo = open(file, 'rb')
 dict = pickle.load(fo, encoding ='bytes')
 X = dict['data']
 fo.close()
 return dict

unpickle('datasets/cifar-10-batches-py/test_batch')

4 个答案:

答案 0 :(得分:2)

您只能通过下面给出的代码读取cifar 10个数据集,只需确保您将批处理所在的写入目录指定为

import tensorflow as tf
import pandas as pd
import numpy as np
import math
import timeit
import matplotlib.pyplot as plt
from six.moves import cPickle as pickle
import os
import platform
from subprocess import check_output
classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

%matplotlib inline


img_rows, img_cols = 32, 32
input_shape = (img_rows, img_cols, 3)
def load_pickle(f):
    version = platform.python_version_tuple()
    if version[0] == '2':
        return  pickle.load(f)
    elif version[0] == '3':
        return  pickle.load(f, encoding='latin1')
    raise ValueError("invalid python version: {}".format(version))

def load_CIFAR_batch(filename):
    """ load single batch of cifar """
    with open(filename, 'rb') as f:
        datadict = load_pickle(f)
        X = datadict['data']
        Y = datadict['labels']
        X = X.reshape(10000,3072)
        Y = np.array(Y)
        return X, Y

def load_CIFAR10(ROOT):
    """ load all of cifar """
    xs = []
    ys = []
    for b in range(1,6):
        f = os.path.join(ROOT, 'data_batch_%d' % (b, ))
        X, Y = load_CIFAR_batch(f)
        xs.append(X)
        ys.append(Y)
    Xtr = np.concatenate(xs)
    Ytr = np.concatenate(ys)
    del X, Y
    Xte, Yte = load_CIFAR_batch(os.path.join(ROOT, 'test_batch'))
    return Xtr, Ytr, Xte, Yte
def get_CIFAR10_data(num_training=49000, num_validation=1000, num_test=10000):
    # Load the raw CIFAR-10 data
    cifar10_dir = '../input/cifar-10-batches-py/'
    X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir)

    # Subsample the data
    mask = range(num_training, num_training + num_validation)
    X_val = X_train[mask]
    y_val = y_train[mask]
    mask = range(num_training)
    X_train = X_train[mask]
    y_train = y_train[mask]
    mask = range(num_test)
    X_test = X_test[mask]
    y_test = y_test[mask]

    x_train = X_train.astype('float32')
    x_test = X_test.astype('float32')

    x_train /= 255
    x_test /= 255

    return x_train, y_train, X_val, y_val, x_test, y_test


# Invoke the above function to get our data.
x_train, y_train, x_val, y_val, x_test, y_test = get_CIFAR10_data()


print('Train data shape: ', x_train.shape)
print('Train labels shape: ', y_train.shape)
print('Validation data shape: ', x_val.shape)
print('Validation labels shape: ', y_val.shape)
print('Test data shape: ', x_test.shape)
print('Test labels shape: ', y_test.shape)

答案 1 :(得分:0)

试试这个

def unpickle(file): import cPickle with open(file, 'rb') as fo: data = cPickle.load(fo) return data

答案 2 :(得分:0)

我知道原因!我有同样的问题,我解决了! 关键问题是关于编码方法,将代码从

更改为
dict = pickle.load(fo, encoding ='bytes')

dict = pickle.load(fo, encoding ='latin1')

答案 3 :(得分:0)

我过去也遇到过类似的问题。

我想为以后的读者提到,您可以找到here一个python包装器,用于自动下载,提取和解析cifar10数据集。