我正在尝试修改cifar10.py的代码,以便能够将图像提供给网络。
我实际上能够运行代码并开始训练过程,但过了一段时间,如果我运行tensorboard,在“images”部分下我总是拥有相同的图像。 此外,交叉熵变为零。 我认为我正在加载错误的图像。
这是代码
def distorted_inputs():
#Reading the dirs file where all the directories of the images are stored
filedirs = [line.rstrip('\n') for line in open('image_dirs.txt')]
#create a list of files
filenames = []
i = 0
for f in filedirs:
png_files_path = glob.glob(os.path.join(f, '*.[pP][nN][gG]'))
print('found ' + str(len(png_files_path)) + ' files in ' + f)
for filename in png_files_path:
#storing file_name label
s = filename + " " + str(i)
filenames.append(s)
i = i+1
# Create a queue that produces the filenames to read and the labels
filename_queue = tf.train.string_input_producer(filenames)
my_img, label = read_my_file_format(filename_queue.dequeue())
label = tf.string_to_number(label, tf.int32)
init_op = tf.initialize_all_variables()
with tf.Session() as sess:
sess.run(init_op)
# Start populating the filename queue.
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
image = my_img.eval()
coord.request_stop()
coord.join(threads)
reshaped_image = tf.cast(image, tf.float32)
resized_image = tf.image.resize_image_with_crop_or_pad(reshaped_image,IMAGE_SIZE, IMAGE_SIZE)
distorted_image = tf.image.random_crop(reshaped_image, [24, 24])
# Randomly flip the image horizontally.
distorted_image = tf.image.random_flip_left_right(distorted_image)
# Because these operations are not commutative, consider randomizing
# randomize the order their operation.
distorted_image = tf.image.random_brightness(distorted_image,max_delta=63)
distorted_image = tf.image.random_contrast(distorted_image,lower=0.2, upper=1.8)
# Subtract off the mean and divide by the variance of the pixels.
float_image = tf.image.per_image_whitening(distorted_image)
# Ensure that the random shuffling has good mixing properties.
min_fraction_of_examples_in_queue = 0.4
min_queue_examples = int(NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN *min_fraction_of_examples_in_queue)
print ('Filling queue with ITSD images before starting to train. ''This will take a few minutes.')
# Generate a batch of images and labels by building up a queue of examples.
return _generate_image_and_label_batch(float_image, label, min_queue_examples)
图像阅读部分来自https://github.com/HamedMP/ImageFlow 自定义阅读器来自Tensorflow read images with labels,相关功能实现如下
def read_my_file_format(filename_and_label_tensor):
"""Consumes a single filename and label as a ' '-delimited string.
Args:
filename_and_label_tensor: A scalar string tensor.
Returns:
Two tensors: the decoded image, and the string label.
"""
filename, label = tf.decode_csv(filename_and_label_tensor, [[""], [""]], " ")
file_contents = tf.read_file(filename)
example = tf.image.decode_png(file_contents)
return example, label
由于
答案 0 :(得分:0)
您可以使用我创建的这段代码来解决我的分类问题:
resized_image = cv2.resize(image, (WIDTH, HEIGHT))
label = np.uint8(nclass)
arr = np.uint8([0 for x in range(image_bytes)])
# fill the label:
arr[0] = label
arr_cnt = 1
# fill the image (row-major order). first R values, then G values then B values
for y in range(0, HEIGHT):
for x in range(0, WIDTH):
arr[arr_cnt] = np.uint8(resized_image[x, y, 2]) # R
arr[arr_cnt + 1024] = np.uint8(resized_image[x, y, 1]) # G
arr[arr_cnt + 2048] = np.uint8(resized_image[x, y, 0]) # B
arr_cnt += 1
print "train arr:", arr[0], arr[3072]
train_arr = np.append(train_arr, arr)
#print train_arr[file_in_dir*3073]
else:
invalids_cnt += 1
#print "image", files_in_dir[file_in_dir], "is invalid"
# Write array to train.bin file:
with open('data_batch_%d.bin' % nclass, 'wb') as f:
f.write(train_arr)
f.close()
这里,调整大小的图像是一个输入图像“图像”的调整大小的版本。接下来,我创建一个3073字节的数组:第一个字节=标签,下一个1024字节=图像的红色值,接下来的1024个字节=图像的绿色值,接下来的1024个字节=图像的蓝色值。
我为每个输入图像执行此操作,然后将其连接成一个大二进制数组,该数组以二进制文件“data_batch_%d”编写
我已经在这个要点中发布了我的完整脚本(可能更难理解):gist