http://codepen.io/Khangeldy/pen/gPJoxJ
JS
// init camera, scene, renderer
var scene, camera, renderer;
scene = new THREE.Scene();
var fov = 75,
aspect = window.innerWidth / window.innerHeight;
camera = new THREE.PerspectiveCamera(fov, aspect, 0.1, 1000);
camera.position.z = 100;
camera.lookAt(scene.position);
renderer = new THREE.WebGLRenderer();
renderer.setClearColor(0xc4c4c4);
renderer.setSize(window.innerWidth, window.innerHeight);
document.body.appendChild(renderer.domElement);
var clock = new THREE.Clock();
var tuniform = {
iGlobalTime: {
type: 'f',
value: 0.1
},
iResolution: {
type: 'v2',
value: new THREE.Vector2()
},
iMouse: {
type: 'v4',
value: new THREE.Vector2()
}
};
// Mouse position in - 1 to 1
renderer.domElement.addEventListener('mousedown', function(e) {
var canvas = renderer.domElement;
var rect = canvas.getBoundingClientRect();
tuniform.iMouse.value.x = (e.clientX - rect.left) / window.innerWidth * 2 - 1;
tuniform.iMouse.value.y = (e.clientY - rect.top) / window.innerHeight * -2 + 1;
});
renderer.domElement.addEventListener('mouseup', function(e) {
var canvas = renderer.domElement;
var rect = canvas.getBoundingClientRect();
tuniform.iMouse.value.z = (e.clientX - rect.left) / window.innerWidth * 2 - 1;
tuniform.iMouse.value.w = (e.clientY - rect.top) / window.innerHeight * -2 + 1;
});
// resize canvas function
window.addEventListener('resize',function() {
camera.aspect = window.innerWidth / window.innerHeight;
camera.updateProjectionMatrix();
renderer.setSize(window.innerWidth, window.innerHeight);
});
tuniform.iResolution.value.x = window.innerWidth;
tuniform.iResolution.value.y = window.innerHeight;
// Create Plane
var material = new THREE.ShaderMaterial({
uniforms: tuniform,
vertexShader: document.getElementById('vertex-shader').textContent,
fragmentShader: document.getElementById('fragment-shader').textContent
});
var mesh = new THREE.Mesh(
new THREE.PlaneBufferGeometry(window.innerWidth, window.innerHeight, 40), material
);
scene.add(mesh);
// draw animation
function render(time) {
tuniform.iGlobalTime.value += clock.getDelta();
requestAnimationFrame(render);
renderer.render(scene, camera);
}
render();
我想知道它是否可以编辑这个动画,所以地平线是平的(所以它看起来不像水球,而不像海洋的地平线?)并且在这个上面,是否有可能使相机“静止”?感谢
答案 0 :(得分:3)
是的,这是可能的。
您所要做的就是试验变量。
// init camera, scene, renderer
var scene, camera, renderer;
scene = new THREE.Scene();
var fov = 75,
aspect = window.innerWidth / window.innerHeight;
camera = new THREE.PerspectiveCamera(fov, aspect, 0.1, 1000);
camera.position.z = 100;
camera.lookAt(scene.position);
renderer = new THREE.WebGLRenderer();
renderer.setClearColor(0xc4c4c4);
renderer.setSize(window.innerWidth, window.innerHeight);
document.body.appendChild(renderer.domElement);
var clock = new THREE.Clock();
var tuniform = {
time: {
type: 'f',
value: 0.1
},
resolution: {
type: 'v2',
value: new THREE.Vector2()
},
mouse: {
type: 'v4',
value: new THREE.Vector2()
}
};
// Mouse position in - 1 to 1
renderer.domElement.addEventListener('mousedown', function(e) {
var canvas = renderer.domElement;
var rect = canvas.getBoundingClientRect();
tuniform.mouse.value.x = (e.clientX - rect.left) / window.innerWidth * 2 - 1;
tuniform.mouse.value.y = (e.clientY - rect.top) / window.innerHeight * -2 + 1;
});
renderer.domElement.addEventListener('mouseup', function(e) {
var canvas = renderer.domElement;
var rect = canvas.getBoundingClientRect();
tuniform.mouse.value.z = (e.clientX - rect.left) / window.innerWidth * 2 - 1;
tuniform.mouse.value.w = (e.clientY - rect.top) / window.innerHeight * -2 + 1;
});
// resize canvas function
window.addEventListener('resize',function() {
camera.aspect = window.innerWidth / window.innerHeight;
camera.updateProjectionMatrix();
renderer.setSize(window.innerWidth, window.innerHeight);
});
tuniform.resolution.value.x = window.innerWidth;
tuniform.resolution.value.y = window.innerHeight;
// Create Plane
var material = new THREE.ShaderMaterial({
uniforms: tuniform,
vertexShader: document.getElementById('vertex-shader').textContent,
fragmentShader: document.getElementById('fragment-shader').textContent
});
var mesh = new THREE.Mesh(
new THREE.PlaneBufferGeometry(window.innerWidth, window.innerHeight, 40), material
);
scene.add(mesh);
// draw animation
function render(time) {
tuniform.time.value += clock.getDelta();
requestAnimationFrame(render);
renderer.render(scene, camera);
}
render();

body {
overflow: hidden;
margin: 0;
height: 100%;
}

<script src="https://cdnjs.cloudflare.com/ajax/libs/three.js/r70/three.min.js"></script>
<!-- THIS is OPENGL Shading language scripts -->
<script id="vertex-shader" type="no-js">
void main() {
gl_Position = vec4( position, 1.0 );
}
</script>
<script id="fragment-shader" type="no-js">
#ifdef GL_ES
precision mediump float;
#endif
uniform float time;
uniform vec2 mouse;
uniform vec2 resolution;
varying vec2 surfacePosition;
const int NUM_STEPS = 8;
const float PI = 3.1415;
const float EPSILON = 1e-3;
float EPSILON_NRM = 0.1 / resolution.x;
// sea
const int ITER_GEOMETRY = 3;
const int ITER_FRAGMENT = 5;
const float SEA_HEIGHT = 0.6;
const float SEA_CHOPPY = 2.0;
const float SEA_SPEED = 0.8;
const float SEA_FREQ = 0.16;
const vec3 SEA_BASE = vec3(0.1,0.19,0.22);
const vec3 SEA_WATER_COLOR = vec3(0.8,0.9,0.6);
const float SKY_INTENSITY = 1.0;
#define SEA_TIME time * SEA_SPEED
// math
mat4 fromEuler(vec3 ang) {
vec2 a1 = vec2(sin(ang.x),cos(ang.x));
vec2 a2 = vec2(sin(ang.y),cos(ang.y));
vec2 a3 = vec2(sin(ang.z),cos(ang.z));
mat4 m;
m[0] = vec4(a1.y*a3.y+a1.x*a2.x*a3.x,a1.y*a2.x*a3.x+a3.y*a1.x,-a2.y*a3.x,0.0);
m[1] = vec4(-a2.y*a1.x,a1.y*a2.y,a2.x,0.0);
m[2] = vec4(a3.y*a1.x*a2.x+a1.y*a3.x,a1.x*a3.x-a1.y*a3.y*a2.x,a2.y*a3.y,0.0);
m[3] = vec4(0.0,0.0,0.0,1.0);
return m;
}
vec3 rotate(vec3 v, mat4 m) {
return vec3(dot(v,m[0].xyz),dot(v,m[1].xyz),dot(v,m[2].xyz));
}
float hash( vec2 p ) {
float h = dot(p,vec2(127.1,311.7));
return fract(sin(h)*43758.5453123);
}
float noise( in vec2 p ) {
vec2 i = floor( p );
vec2 f = fract( p );
vec2 u = f*f*(3.0-2.0*f);
return -1.0+2.0*mix( mix( hash( i + vec2(0.0,0.0) ),
hash( i + vec2(1.0,0.0) ), u.x),
mix( hash( i + vec2(0.0,1.0) ),
hash( i + vec2(1.0,1.0) ), u.x), u.y);
}
// lighting
float diffuse(vec3 n,vec3 l,float p) { return pow(dot(n,l) * 0.4 + 0.6,p); }
float specular(vec3 n,vec3 l,vec3 e,float s) {
float nrm = (s + 8.0) / (3.1415 * 8.0);
return pow(max(dot(reflect(e,n),l),0.0),s) * nrm;
}
// sky
vec3 sky_color(vec3 e) {
e.y = max(e.y,0.0);
vec3 ret;
ret.x = pow(1.0-e.y,2.0);
ret.y = 1.0-e.y;
ret.z = 0.6+(1.0-e.y)*0.4;
return ret * SKY_INTENSITY;
}
// sea
float sea_octave(vec2 uv, float choppy) {
uv += noise(uv);
vec2 wv = 1.0-abs(sin(uv));
vec2 swv = abs(cos(uv));
wv = mix(wv,swv,wv);
return pow(1.0-pow(wv.x * wv.y,0.65),choppy);
}
float map(vec3 p) {
float freq = SEA_FREQ;
float amp = SEA_HEIGHT;
float choppy = SEA_CHOPPY;
vec2 uv = p.xz; uv.x *= 0.75;
mat2 m = mat2(1.6,1.2,-1.2,1.6);
float d, h = 0.0;
for(int i = 0; i < ITER_GEOMETRY; i++) {
d = sea_octave((uv+SEA_TIME)*freq,choppy);
d += sea_octave((uv-SEA_TIME)*freq,choppy);
h += d * amp;
uv *= m; freq *= 1.9; amp *= 0.22;
choppy = mix(choppy,1.0,0.2);
}
return p.y - h;
}
float map_detailed(vec3 p) {
float freq = SEA_FREQ;
float amp = SEA_HEIGHT;
float choppy = SEA_CHOPPY;
vec2 uv = p.xz; uv.x *= 0.75;
mat2 m = mat2(1.6,1.2,-1.2,1.6);
float d, h = 0.0;
for(int i = 0; i < ITER_FRAGMENT; i++) {
d = sea_octave((uv+SEA_TIME)*freq,choppy);
d += sea_octave((uv-SEA_TIME)*freq,choppy);
h += d * amp;
uv *= m; freq *= 1.9; amp *= 0.22;
choppy = mix(choppy,1.0,0.2);
}
return p.y - h;
}
vec3 sea_color(in vec3 p, in vec3 n, in vec3 eye, in vec3 dist) {
float fresnel_o = 1.0 - max(dot(n,-eye),0.0);
float fresnel = pow(fresnel_o,3.0) * 0.65;
// reflection
vec3 refl = sky_color(reflect(eye,n));
// color
vec3 ret = SEA_BASE;
ret = mix(ret,refl,fresnel);
// wave peaks
float atten = max(1.0 - dot(dist,dist) * 0.001, 0.0);
ret += SEA_WATER_COLOR * (p.y - SEA_HEIGHT) * 0.18 * atten;
return ret;
}
// tracing
vec3 getNormal(vec3 p, float eps) {
vec3 n;
n.y = map_detailed(p);
n.x = map_detailed(vec3(p.x+eps,p.y,p.z)) - n.y;
n.z = map_detailed(vec3(p.x,p.y,p.z+eps)) - n.y;
n.y = eps;
return normalize(n);
}
float hftracing(vec3 ori, vec3 dir, out vec3 p) {
float tm = 0.0;
float tx = 1000.0;
float hx = map(ori + dir * tx);
if(hx > 0.0) return tx;
float hm = map(ori + dir * tm);
float tmid = 0.0;
for(int i = 0; i < NUM_STEPS; i++) {
tmid = mix(tm,tx, hm/(hm-hx));
p = ori + dir * tmid;
float hmid = map(p);
if(hmid < 0.0) {
tx = tmid;
hx = hmid;
} else {
tm = tmid;
hm = hmid;
}
}
return tmid;
}
// main
void main(void)
{
vec2 uv = gl_FragCoord.xy / resolution.xy;
uv = 1.0 - uv * 2.0;
uv.x *= resolution.x / resolution.y;
//uv = (surfacePosition+vec2(0., .5))*17. + 5E-3*(pow(length(surfacePosition+vec2(0. ,0.5)), -2.));
uv.y *= -1.;
//uv.y += -2.;
// ray
vec3 ang = vec3(0.0,0.003, pow(time, 0.6));
ang = vec3(0.0,clamp(2.0-mouse.y*0.01,-0.3,PI),mouse.x*0.01);
vec3 ori = vec3(0.0,3.5,time*.05);
vec3 dir = normalize(vec3(uv.xy,-2.0));
dir.z -= length(uv) * 0.15;
//dir = rotate(normalize(dir),ang);
// tracing
vec3 p;
float dens = hftracing(ori,dir,p);
vec3 dist = p - ori;
vec3 n = getNormal(p, dot(dist,dist)*EPSILON_NRM);
// color
vec3 color = sea_color(p,n,dir,dist);
vec3 light = normalize(vec3(0.0,1.0,0.8));
color += vec3(diffuse(n,light,80.0) * SEA_WATER_COLOR) * 0.12;
color += vec3(specular(n,light,dir,60.0));
// post
color = mix(sky_color(dir),color,pow(smoothstep(0.0,-0.05,dir.y),0.3));
color = pow(color,vec3(0.75));
gl_FragColor = vec4(color,1.0);
}
</script>
&#13;
外部演示