F#递归类型:方法与函数类型推理差异

时间:2016-05-20 11:52:47

标签: f# type-inference recursive-datastructures recursive-type

有人可以解释为什么F#类型推理在类方法和函数之间似乎有不同的工作方式(或者我不理解的其他方面?)。

想象一下以下(简化):

type Node<'T> = Node2 of 'T * 'T
type Digit<'T> = One of 'T | Two of 'T * 'T
type Tree<'T> =
    | Empty
    | Single of 'T
    | Deep of prefix : Digit<'T> * deeper : Tree<Node<'T>>
    with
    static member Add (value : 'T) (tree : Tree<'T>) : Tree<'T> =
        match tree with
        | Empty -> Single value
        | Single a -> Deep (One value, Empty)
        | Deep (One a, deeper) -> Deep (Two (value, a), deeper)
        | Deep (Two (b, a), deeper) -> Deep (One value, deeper |> Tree.Add (Node2 (b, a)))

let rec add (value : 'T) (tree : Tree<'T>) : Tree<'T> =
    match tree with
    | Empty -> Single value
    | Single a -> Deep (One value, Empty)
    | Deep (One a, deeper) -> Deep (Two (value, a), deeper)
    | Deep (Two (b, a), deeper) -> Deep (One value, deeper |> add (Node2 (b, a)))

请注意,静态方法Add和函数add具有相同的实现,并且都以递归方式调用自身。

然而,前者编译得很好但后者报告错误:

Type mismatch. Expecting a
    Tree<Node<'T>> -> Tree<Node<'T>>    
but given a
    Tree<'T> -> Tree<'T>    
The resulting type would be infinite when unifying ''T' and 'Node<'T>'

1 个答案:

答案 0 :(得分:3)

在自由浮动函数add中,泛型类型参数属于函数本身(add<'T>)。

但是,在静态成员函数中,type参数实际上属于类(Tree<'T>)。

为什么这很重要?因为当您引用函数本身时,除非另行指定,否则编译器会假定type参数未更改。它不会猜到另一个,因为这可能会隐藏一大类不匹配错误。

但是,它并没有对函数所属的类型做出相同的假设。

如果检查参数,则假定对add的调用是对add<'T>的调用,这会导致无限泛型递归并且不会编译。

但是,对Tree.Add的调用被推断为对Tree<Node<'T>>.AddTree<'T>.Add的调用。它完全是一个不同的函数调用。

如果明确注释类型:

static member Add (value : 'T) (tree : Tree<'T>) : Tree<'T> =
    // ...
    | Deep (Two (b, a), deeper) -> Deep (One value, deeper |> Tree<'T>.Add (Node2 (b, a)))

您将获得与自由函数完全相同的类型不匹配/无限类型错误。

同样,如果您将其设为实例成员并引用相同的实例,则会收到错误:

member this.Add (value : 'T) (tree : Tree<'T>) : Tree<'T> =
    // ...
    | Deep (Two (b, a), deeper) -> Deep (One value, deeper |> this.Add (Node2 (b, a)))

反之亦然,你可以通过注释类型参数来编译自由函数,这样编译器就不会假设它是相同的符号,所以必须引用相同的值&#34; :

let rec add<'T> (value : 'T) (tree : Tree<'T>) : Tree<'T> =
    // ...
    | Deep (Two (b, a), deeper) -> Deep (One value, deeper |> add (Node2 (b, a)))