pandas:在multiindex df中重命名列标签

时间:2016-05-18 16:04:56

标签: python pandas dataframe multiple-columns multi-index

我的df看起来像这样:

import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.random((4,4)))
df.columns = pd.MultiIndex.from_product([['1|mm','2|lll'],['A|ljjh','B|ldjdj']])

       1|mm               2|lll          
     A|ljjh   B|ldjdj    A|ljjh   B|ldjdj
0  0.599202  0.093917  0.582809  0.683346
1  0.902717  0.343215  0.222960  0.238709
2  0.808473  0.290253  0.276607  0.775530
3  0.197891  0.505197  0.243890  0.011838

我想像这样拆分每个级别的列标签:

columnlabel.split("|")[0]

我不确定这样做的最佳方法是什么?我应该创建一个新列表并将其分配给df.columns还是可以在现场进行?

预期产出

     1                   2          
     A       B         A         B
0  0.599202  0.093917  0.582809  0.683346
1  0.902717  0.343215  0.222960  0.238709
2  0.808473  0.290253  0.276607  0.775530
3  0.197891  0.505197  0.243890  0.011838

1 个答案:

答案 0 :(得分:1)

您可以使用get_level_valuessplit进行解析,创建新的tuples列表和上一个新的MultiIndex from_tuples

new_names = list(zip(df.columns.get_level_values(0).str.split('|').str[0],
                     df.columns.get_level_values(1).str.split('|').str[0]))
print (new_names)      
[('1', 'A'), ('1', 'B'), ('2', 'A'), ('2', 'B')]

df.columns = pd.MultiIndex.from_tuples(new_names)
print (df)
          1                   2          
          A         B         A         B
0  0.400125  0.007743  0.423123  0.662878
1  0.787079  0.314668  0.798404  0.702267
2  0.451037  0.333846  0.030534  0.823515
3  0.135365  0.785421  0.777839  0.248622