所选行的Pandas数据框的聚合

时间:2016-05-13 23:18:34

标签: python pandas time-series aggregate

我有一个pandas排序数据框(基于时间),如下所示:

from datetime import datetime
df = pd.DataFrame({ 'ActivityDateTime' : [datetime(2016,5,13,6,14),datetime(2016,5,13,6,16),
                                 datetime(2016,5,13,6,20),datetime(2016,5,13,6,27),datetime(2016,5,13,6,31),
                                 datetime(2016,5,13,6,32),
                                datetime(2016,5,13,17,34),datetime(2016,5,13,17,36),
                                 datetime(2016,5,13,17,38),datetime(2016,5,13,17,45),datetime(2016,5,13,17,47),
                                datetime(2016,5,16,13,3),datetime(2016,5,16,13,6),
                                 datetime(2016,5,16,13,10),datetime(2016,5,16,13,14),datetime(2016,5,16,13,16)],
              'Value1' : [0.0,2.0,3.0,4.0,0.0,0.0,0.0,7.0,8.0,4.0,0.0,0.0,3.0,9.0,1.0,0.0],
               'Value2' : [0.0,2.0,3.0,4.0,0.0,0.0,0.0,7.0,8.0,4.0,0.0,0.0,3.0,9.0,1.0,0.0]
        })

结果如下:

ActivityDateTime    Value1  Value2
0   2016-05-13 06:14:00 0.0 0.0
1   2016-05-13 06:16:00 2.0 2.0
2   2016-05-13 06:20:00 3.0 3.0
3   2016-05-13 06:27:00 4.0 4.0
4   2016-05-13 06:31:00 0.0 0.0
5   2016-05-13 06:32:00 0.0 0.0
6   2016-05-13 17:34:00 0.0 0.0
7   2016-05-13 17:36:00 7.0 7.0
8   2016-05-13 17:38:00 8.0 8.0
9   2016-05-13 17:45:00 4.0 4.0
10  2016-05-13 17:47:00 0.0 0.0
11  2016-05-16 13:03:00 0.0 0.0
12  2016-05-16 13:06:00 3.0 3.0
13  2016-05-16 13:10:00 9.0 9.0
14  2016-05-16 13:14:00 1.0 1.0
15  2016-05-16 13:16:00 0.0 0.0

我想在没有for循环的情况下聚合数据(平均)。但是,我要将观察分组的方式并不简单!查看Value1,我想将它们组合为non-zero个值。例如,标记1,2,3将在一个组中。一个组和另一个组中的名片7,8,912,13,14。应避免使用value1==0的行,并且零作为组之间的分隔。最终我想得到这样的东西:

Activity_end    Activity_start  Value1  Value2  num_observations
0   2016-05-13 06:27:00 2016-05-13 06:16:00 4.50    4.50    3
1   2016-05-13 17:45:00 2016-05-13 17:36:00 6.33    6.33    3
2   2016-05-16 13:14:00 2016-05-16 13:06:00 4.33    4.33    3

目前,我认为我应该以某种方式将数字123分配给新列,然后根据它进行汇总。我不知道如何在没有for循环的情况下制作该列!请注意,Value1Value2不一定相同。

1 个答案:

答案 0 :(得分:4)

这样做的一种方法是创建一些临时列

# First create a new series, which is true whenever the value changes from a zero value to a non-zero value (which will be at the start of each group)
nonzero = (df['Value1'] > 0) & (df['Value1'].shift(1) == 0)
# Take a cumulative sum. This means each group will have it's own number.
df['group'] = df['nonzero'].cumsum()
# Group by the group column
gb = df[df['Value1'] > 0].groupby('group')

然后,您可以使用汇总函数http://pandas.pydata.org/pandas-docs/stable/groupby.html

获取此组的聚合

对于您特别想要作为输出的内容,请看一下这个答案:Python Pandas: Multiple aggregations of the same column

df2 = gb.agg({
    'ActivityDateTime': ['first', 'last'],
    'Value1': 'mean',
    'Value2': 'mean'})