我正在尝试将列拆分为两个,但我知道我的数据中有空值。想象一下这个数据框:
df = pd.DataFrame(['fruit: apple','vegetable: asparagus',None, 'fruit: pear'], columns = ['text'])
df
text
0 fruit: apple
1 vegetable: asparagus
2 None
3 fruit: pear
我想把它分成多个列,如下所示:
df['cat'] = df['text'].apply(lambda x: 'unknown' if x == None else x.split(': ')[0])
df['value'] = df['text'].apply(lambda x: 'unknown' if x == None else x.split(': ')[1])
print df
text cat value
0 fruit: apple fruit apple
1 vegetable: asparagus vegetable asparagus
2 None unknown unknown
3 fruit: pear fruit pear
但是,如果我有以下df代替:
df = pd.DataFrame(['fruit: apple','vegetable: asparagus',np.nan, 'fruit: pear'], columns = ['text'])
拆分会导致以下错误:
df['cat'] = df['text'].apply(lambda x: 'unknown' if x == np.nan else x.split(': ')[0])
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-159-8e5bca809635> in <module>()
1 df = pd.DataFrame(['fruit: apple','vegetable: asparagus',np.nan, 'fruit: pear'], columns = ['text'])
2 #df.columns = ['col_name']
----> 3 df['cat'] = df['text'].apply(lambda x: 'unknown' if x == np.nan else x.split(': ')[0])
4 df['value'] = df['text'].apply(lambda x: 'unknown' if x == np.nan else x.split(': ')[1])
C:\Python27\lib\site-packages\pandas\core\series.pyc in apply(self, func, convert_dtype, args, **kwds)
2158 values = lib.map_infer(values, lib.Timestamp)
2159
-> 2160 mapped = lib.map_infer(values, f, convert=convert_dtype)
2161 if len(mapped) and isinstance(mapped[0], Series):
2162 from pandas.core.frame import DataFrame
pandas\src\inference.pyx in pandas.lib.map_infer (pandas\lib.c:62187)()
<ipython-input-159-8e5bca809635> in <lambda>(x)
1 df = pd.DataFrame(['fruit: apple','vegetable: asparagus',np.nan, 'fruit: pear'], columns = ['text'])
2 #df.columns = ['col_name']
----> 3 df['cat'] = df['text'].apply(lambda x: 'unknown' if x == np.nan else x.split(': ')[0])
4 df['value'] = df['text'].apply(lambda x: 'unknown' if x == np.nan else x.split(': ')[1])
AttributeError: 'float' object has no attribute 'split'
如何使用NaN值进行相同的拆分? 通常有更好的方法来应用忽略空值的拆分函数吗?
想象一下,这不是一个字符串示例,而是如果我有以下内容:
df = pd.DataFrame([2,4,6,8,10,np.nan,12], columns = ['numerics'])
df['numerics'].apply(lambda x: np.nan if pd.isnull(x) else x/2.0)
我觉得Series.apply几乎应该采用一个参数来指示它跳过空行并将它们输出为空值。我还没有找到更好的泛型方法来对系列进行转换,而无需手动避免空值。
答案 0 :(得分:5)
您可以使用apply
方法代替Series.str.extract
自定义函数:
import numpy as np
import pandas as pd
# df = pd.DataFrame(['fruit: apple','vegetable: asparagus',None, 'fruit: pear'],
# columns = ['text'])
df = pd.DataFrame(['fruit: apple','vegetable: asparagus',np.nan, 'fruit: pear'],
columns = ['text'])
df[['cat', 'value']] = df['text'].str.extract(r'([^:]+):?(.*)', expand=True).fillna('unknown')
print(df)
产量
text cat value
0 fruit: apple fruit apple
1 vegetable: asparagus vegetable asparagus
2 NaN unknown unknown
3 fruit: pear fruit pear
具有自定义函数的 apply
通常比使用Series.str.extract
等矢量化方法的等效代码慢。在幕后,apply
(带有不可向量的函数)本质上在Python for-loop
中调用自定义函数。
关于编辑过的问题:如果你有
df = pd.DataFrame([2,4,6,8,10,np.nan,12], columns = ['numerics'])
然后使用
In [207]: df['numerics']/2
Out[207]:
0 1.0
1 2.0
2 3.0
3 4.0
4 5.0
5 NaN
6 6.0
Name: numerics, dtype: float64
而不是
df['numerics'].apply(lambda x: np.nan if pd.isnull(x) else x/2.0)
同样,矢量化算术使用自定义函数击败apply
:
In [210]: df = pd.concat([df]*100, ignore_index=True)
In [211]: %timeit df['numerics']/2
10000 loops, best of 3: 93.8 µs per loop
In [212]: %timeit df['numerics'].apply(lambda x: np.nan if pd.isnull(x) else x/2.0)
1000 loops, best of 3: 836 µs per loop