在开始之前,我必须说对于具有线性代数背景的人来说,这不是矩阵分解,因为你知道它。请阅读以下段落,以便更清楚地了解我要解决的问题。
以下是矩阵及其子矩阵的显着属性/定义:
这是(空)主矩阵的样子。矩阵中的每个方块简称为方框。矩阵可以被视为一种“游戏板”,例如国际象棋棋盘。使用间隔标度(即实数)测量垂直轴,使用单调增加的非负整数测量水平轴。
子矩阵的“形式”定义是它是主矩阵中包含的M个盒子的配置,满足标准:
垂直单位是主矩阵中垂直轴线之间的间隙。在下图中,垂直单位为100。
上面的图像说明了一个简单的子矩阵加法。带有橙色寄宿生/盒子的单位是子矩阵 - 构成我词汇的一部分的公认单位。您会注意到我在子矩阵中引入了更多注释。这是因为(使用国际象棋类比),我有两种类型的棋子可以在棋盘上使用。 B 表示黑色部分, W (图中未显示)表示白色部分。公认的单位(或词汇/子矩阵)有一个简单的等价关系,允许白件和黑件之间的转换。该关系可用于进一步分解子矩阵以仅使用黑色片,白色片或两者的组合。
为简单起见,我省略了指定等价关系。但是,如果有人认为所提出的问题并非“太难”而没有其他细节,我很乐意扩大范围。就目前而言,我正在努力使事情变得尽可能简单,以避免让人们混淆“信息过载”。
子矩阵中的每个框都包含一个有符号整数,表示项目的单位数。盒子的每个“配置”(连同其带符号整数和片段类型,即黑色或白色片段)被称为“识别单元”。
子矩阵可以以重叠的方式放置在主矩阵中。无论“框”重叠在哪里,结果子矩阵框中的单位数就是组成框中单位数的总和(如上图第二幅图所示)。
问题变得有点困难,因为上面定义的“认可单位”有时与其他“认可单位”组合形成另一个“认可单位” - 即子矩阵(即已识别单位)为"holons" 。例如,在上面的第二图像中,被添加到矩阵中的识别单元本身可以进一步分解为“较小”子矩阵。
这种holarchy类似于(在物理化学中)元素形成化合物,然后形成更复杂的化合物(氨基酸,蛋白质等)。
回到我们的问题,给定一个主矩阵M,我希望能够做到以下几点:
我。识别主矩阵中包含的子矩阵(或已识别的单元)。这是第一个“矩阵分解”。 (注意:子矩阵必须满足上面给出的标准)
II。对于每个识别的子矩阵,我希望能够识别它是否可以进一步分解为2个或更多个已识别的子矩阵。我们的想法是迭代地分解上面步骤i中找到的子矩阵,直到达到指定的层次结构级别,或者直到我们有一组有限的子矩阵不能进一步分解。
我正在尝试提出一种算法来帮助我做上面的(i)和(ii)。我将在C ++,Python或C#中实现逻辑(在不断增加的优先级中),这取决于哪个是最容易做的和/或我碰巧得到片段来让我开始实现算法。
答案 0 :(得分:1)
我不确定我是否正确理解了这个问题。
首先,ypu想要找到符合你的2个criterea的所有子矩阵。 这就像我认为的图分解问题或集合覆盖问题,你可以有一个递归函数并迭代矩阵来找到所有可用的子矩阵。
enum PieceTypes
{
White,
Black
}
class Box
{
public PieceTypes PieceType { get; set; }
public uint Units { get; set; }
public int s, p;
public Box(PieceTypes piecetype, uint units)
{
PieceType = piecetype;
Units = units;
}
}
class Matrix
{
public Box[,] Boxes;
public int Scale, S, P, MaxNum, MaxDist;
public List<List<Box>> Configurations;
public Matrix(int s, int p, int scale, int maxnum, int maxdist)
{
S = s;
P = p;
Scale = scale;
Boxes = new Box[S, P];
MaxNum = maxnum;
MaxDist = maxdist;
Configurations = new List<List<Box>>();
}
public void Find(List<Box> Config, int s, int p)
{
// Check the max number thats valid for your configuration
// Check that the current p and s are inside matrix
if (Config.Count() < MaxNum && s >= 0 && s < S && p >= 0 && p < P)
{
foreach (Box b in Config)
{
if (Valid(b, Boxes[s, p]))
{
Boxes[s, p].s = s;
Boxes[s, p].p = p;
Config.Add(Boxes[s, p]);
break;
}
}
Find(Config, s + 1, p);
Find(Config, s - 1, p);
Find(Config, s, p + 1);
Find(Config, s, p - 1);
}
if (Config.Count() > 0) Configurations.Add(Config);
Config.Clear();
}
public bool Valid(Box b1, Box b2)
{
// Create your dist funtion here
// or add your extra validation rules like the PieceType
if (Math.Sqrt((b1.s - b2.s) ^ 2 + (b1.p - b2.p) ^ 2) <= MaxDist && b1.PieceType == b2.PieceType) return true;
else return false;
}
}
我没有使用最好的数据结构,我简化了解决方案。我希望它有所帮助。