我正在尝试实现一个savitzky_golay过滤器,但我不断收到此错误:
firstvals = y[0] - np.abs( y[1:half_window+1][::-1] - y[0] )
TypeError: unsupported operand type(s) for -: 'list' and 'float'
这是代码,它是从库中过去的精确副本:
def savitzky_golay(y, window_size, order, deriv=0, rate=1):
try:
window_size = np.abs(np.int(window_size))
order = np.abs(np.int(order))
except ValueError, msg:
raise ValueError("window_size and order have to be of type int")
if window_size % 2 != 1 or window_size < 1:
raise TypeError("window_size size must be a positive odd number")
if window_size < order + 2:
raise TypeError("window_size is too small for the polynomials order")
order_range = range(order+1)
half_window = (window_size -1) // 2
# precompute coefficients
b = np.mat([[k**i for i in order_range] for k in range(-half_window, half_window+1)])
m = np.linalg.pinv(b).A[deriv] * rate**deriv * factorial(deriv)
# pad the signal at the extremes with
# values taken from the signal itself
firstvals = y[0] - np.abs( y[1:half_window+1][::-1] - y[0] )
lastvals = y[-1] + np.abs(y[-half_window-1:-1][::-1] - y[-1])
y = np.concatenate((firstvals, y, lastvals))
return np.convolve( m[::-1], y, mode='valid')
def main():
y=MoveAxeAndFFT(30,2)
yth=savitzky_golay(y, 51, 3)
答案 0 :(得分:0)
输入信号必须是一个数组,所以我改变了它:
y1=np.array(y)
yth=savitzky_golay(y1, 51, 3)
它有效。