我是逻辑世界的新手。我正在学习Hoare Logic和Partial&程序的完全正确性。我尝试了很多来解决下面的问题,但失败了。
Write a loop invariant P to show partial correctness for the Hoare triple
{x = ¬x ∧ y = ¬y ∧ x >= 0} mult {z = ¬x * ¬y}
where mult is the following program that computes the product of x and y and stores it in z:
mult:
z := 0;
while (y > 0) do
z := z + x;
y := y - 1;
我的一位朋友给了我以下答案,但我不知道它是否正确。
Invariant P is (¬x * ¬y = z + ¬x * y) ∧ x = ¬x. Intuitively, z holds the part of the result that is already computed, and (¬x * y) is what remains to compute.
请一步一步教我如何解决这个问题。