对数线性模型,泊松回归,100级分类变量

时间:2016-04-27 01:37:13

标签: r regression poisson

我想比较100个不同城市(cityID)的发病率(asum),看看它们之间是否存在显着差异。鉴于发生率遵循泊松,因此它是对数线性模型。

m0=glm(asum~cityID, family=poisson, data=suit)
summary(m0)

然而,结果看起来如此笨拙和愚蠢。我做错了什么吗?或者,为了我的目的,有没有更好的方法来分析数据?

Call:
glm(formula = asum ~ cityID, family = poisson, data = suit)

Deviance Residuals: 
  [1]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
 [25]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
 [49]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
 [73]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
 [97]  0  0  0  0

Coefficients:
            Estimate Std. Error z value Pr(>|z|)    
(Intercept)  3.63759    0.16222  22.424  < 2e-16 ***
cityID2      1.68542    0.17662   9.543  < 2e-16 ***
cityID3      1.79614    0.17516  10.254  < 2e-16 ***
cityID4      2.17355    0.17120  12.696  < 2e-16 ***
cityID5      1.02585    0.18908   5.426 5.78e-08 ***
cityID6      2.20306    0.17095  12.887  < 2e-16 ***
:
:
:
cityID90     0.92676    0.19166   4.836 1.33e-06 ***
cityID91     1.28239    0.18334   6.994 2.66e-12 ***
cityID92     2.40267    0.16940  14.183  < 2e-16 ***
cityID93     1.39937    0.18113   7.726 1.11e-14 ***
cityID94    -1.23969    0.34238  -3.621 0.000294 ***
cityID95     0.59652    0.20201   2.953 0.003148 ** 
cityID96    -2.25129    0.52566  -4.283 1.85e-05 ***
cityID97     1.86367    0.17435  10.689  < 2e-16 ***
cityID98     1.82625    0.17479  10.448  < 2e-16 ***
cityID99     1.96453    0.17322  11.341  < 2e-16 ***
cityID100    0.93712    0.19138   4.897 9.74e-07 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 1.0608e+04  on 99  degrees of freedom
Residual deviance: 2.8200e-14  on  0  degrees of freedom
AIC: 804.18

Number of Fisher Scoring iterations: 3

0 个答案:

没有答案