我有两列信息。第二列是以秒为单位的时间。第一列是当时的错误。我需要制作一个包含2.5秒间隔的错误值的向量,以秒为单位。应该有172个。这是我的数据: col 0 =错误,col 1 =以秒为单位的时间
array([[0.00, 0.01],
[1.91, 9.60],
[0.00, 19.08],
[2.05, 28.64],
[1.04, 38.19],
[1.89, 47.73],
[1.69, 57.27],
[2.24, 66.79],
[1.89, 76.33],
[1.86, 85.88],
[2.37, 95.39],
[2.29, 104.93],
[2.03, 114.45],
[2.16, 123.99],
[1.34, 133.52],
[2.40, 143.03],
[2.17, 152.54],
[0.00, 162.03],
[1.61, 171.59],
[2.31, 181.13],
[2.15, 190.67],
[2.22, 200.19],
[2.16, 209.72],
[0.00, 219.20],
[2.65, 228.76],
[1.74, 238.33],
[0.00, 247.85],
[2.33, 257.42],
[1.85, 266.94],
[0.00, 276.50],
[2.27, 286.06],
[1.67, 295.62],
[2.41, 305.15],
[0.00, 314.65],
[1.32, 324.21],
[2.39, 333.74],
[2.19, 343.27],
[2.51, 352.81],
[2.41, 362.33],
[1.79, 371.86],
[0.00, 381.36],
[3.07, 390.93],
[2.30, 400.47],
[0.00, 409.98],
[2.41, 419.54],
[2.22, 0.05],
[1.75, 9.59],
[2.18, 19.14],
[1.99, 28.64],
[1.80, 38.16],
[1.45, 47.68],
[1.57, 57.21],
[2.24, 66.74],
[0.00, 76.24],
[2.31, 85.80],
[0.00, 95.29],
[2.39, 104.85],
[0.00, 114.34],
[0.95, 123.89],
[2.35, 133.42],
[2.43, 142.98],
[1.66, 152.48],
[1.08, 162.01],
[0.00, 171.53],
[1.20, 181.08],
[2.43, 190.64],
[2.42, 200.16],
[2.59, 209.69],
[1.98, 219.22],
[1.75, 228.76],
[2.28, 238.28],
[1.98, 247.80],
[1.08, 257.33],
[2.08, 266.84],
[2.30, 276.37],
[0.00, 285.84],
[1.38, 295.40],
[2.19, 304.95],
[0.00, 314.44],
[1.54, 324.01],
[2.19, 333.52],
[0.00, 343.02],
[2.13, 352.59],
[2.31, 362.13],
[0.00, 371.61],
[2.36, 381.18],
[2.02, 390.71],
[2.68, 400.24],
[0.00, 409.71],
[2.19, 419.28]])
我尝试使用以下代码使用线性插值器,但得到错误ValueError: A value in x_new is below the interpolation range.
import numpy as np
#import scipy
#import matplotlib.pyplot as plt
from scipy import interpolate
float_formatter = lambda x: "%.2f" % x
#np.set_printoptions(formatter={'float_kind':float_formatter})
# Read the text file with the errors - error,time format
orig=np.genfromtxt('Error_Onsets.csv',delimiter=',')
print repr(orig)
# Build a linear interpolator, giving it the known time (X) and error (Y)
interpf = interpolate.interp1d(orig[:,1],orig[:,0],kind='linear')
# What's the TR?
TR=2.5
# Setup the new vector of times, spaced by TRs
new_times=np.arange(0,172*TR,TR)
# Interpolate using the func defined above to get the error at any TR
new_err = interpf(new_times)
我读到这可能是因为x值需要稳定增加才能使线性插值合适。我很感激任何建议。
答案 0 :(得分:2)
我通常会在没有插值的情况下执行此操作,只使用最新值(因此不会对未来数据进行采样):
times = np.arange(orig[0,1], orig[-1,1], 2.5)
indexes = np.searchsorted(orig[:,1], times, side='right') - 1
np.column_stack((orig[indexes,0], times))
这会给你两列:相隔2.5s的新时间,以及那些时间的最新错误值。