我有一张旅行时间图,我希望得到从源到接收器的最短路径的整数点。
我现在的解决方案是我从接收器位置进行runge-kutta集成并得到一系列浮点数。然后我每隔5个或一些点进行采样,并假设它之间是一条直线,以便使用Bresenham的线算法。通过这种方法,我将得到整数点。
然而,这还不够快。因为我需要计算很多接收器的最短路径,所以时间总和会非常大。
我使用line_profiler来分析耗时,这表明时间的主要部分是函数ruge-kutta及其调用函数get_velocity
代码在
之下def optimal_path_2d(gradx_interp,
grady_interp,
starting_point,
dx,
N=100):
"""
Find the optimal path from starting_point to the zero contour
of travel_time. dx is the grid spacing
Solve the equation x_t = - grad t / | grad t |
"""
def get_velocity(position):
""" return normalized velocity at pos """
x, y = position
vel = np.array([gradx_interp(y, x)[0][0], grady_interp(y, x)[0][0]])
return vel / np.linalg.norm(vel)
def runge_kutta(pos, ds):
""" Fourth order Runge Kutta point update """
k1 = ds * get_velocity(pos)
k2 = ds * get_velocity(pos - k1 / 2.0)
k3 = ds * get_velocity(pos - k2 / 2.0)
k4 = ds * get_velocity(pos - k3)
return pos - (k1 + 2 * k2 + 2 * k3 + k4) / 6.0
x = runge_kutta(starting_point, dx)
xl, yl = [], []
for i in range(N):
xl.append(x[0])
yl.append(x[1])
x = runge_kutta(x, dx)
distance = ((x[0] - xl[-1])**2 +
(x[1] - yl[-1])**2)**0.5
if distance < dx*0.9:
break
return yl, xl
def get_curve(x_curve, y_curve, num_interval):
"""Curve Algorithm based on Bresenham's Line Algorithm
Produces a list of tuples
"""
num = len(x_curve)
if num < num_interval:
print("num_interval is too large.")
ret_set = set()
x0 = x_curve[0]
y0 = y_curve[0]
for i in range(num_interval, num, num_interval):
x1 = x_curve[i]
y1 = y_curve[i]
points_on_line = get_line((x0, y0), (x1, y1))
ret_set.update(points_on_line)
x0 = x1
y0 = y1
if num % num_interval != 0:
n = int(num/num_interval)*num_interval
x0 = x_curve[n]
y0 = y_curve[n]
x1 = x_curve[-1]
y1 = y_curve[-1]
points_on_line = get_line((x0, y0), (x1, y1))
ret_set.update(points_on_line)
return list(ret_set)
def get_line(start, end):
"""modifed version of Bresenham's Line Algorithm
Produces a list of tuples from start and end
>>> points1 = get_line((0, 0), (3, 4))
>>> points2 = get_line((3, 4), (0, 0))
>>> assert(set(points1) == set(points2))
>>> print points1
[(0, 0), (1, 1), (1, 2), (2, 3), (3, 4)]
>>> print points2
[(3, 4), (2, 3), (1, 2), (1, 1), (0, 0)]
"""
# Setup initial conditions
x1, y1 = (int(x) for x in start)
x2, y2 = (int(x) for x in end)
dx = x2 - x1
dy = y2 - y1
# Determine how steep the line is
is_steep = abs(dy) > abs(dx)
# Rotate line
if is_steep:
x1, y1 = y1, x1
x2, y2 = y2, x2
# Swap start and end points if necessary and store swap state
swapped = False
if x1 > x2:
x1, x2 = x2, x1
y1, y2 = y2, y1
swapped = True
# Recalculate differentials
dx = x2 - x1
dy = y2 - y1
# Calculate error
error = int(dx / 2.0)
ystep = 1 if y1 < y2 else -1
# Iterate over bounding box generating points between start and end
y = y1
points = []
for x in range(x1, x2 + 1):
coord = (y, x) if is_steep else (x, y)
points.append(coord)
error -= abs(dy)
if error < 0:
y += ystep
error += dx
# Reverse the list if the coordinates were swapped
if swapped:
points.reverse()
return points
nx = 100
ny = 100
num_interval = 5
loc_src = (10, 10)
loc_rec = (70, 90)
coordx = np.arange(nx)
coordy = np.arange(ny)
X, Y = np.meshgrid(coordx, coords)
travel_time = (X-loc_src[0])**2/5 + (Y-loc_src[1])**2/10 # for simplicity
grad_t_y, grad_t_x = np.gradient(travel_time, dx)
if isinstance(travel_time, np.ma.MaskedArray):
grad_t_y[grad_t_y.mask] = 0.0
grad_t_y = grad_t_y.data
grad_t_x[grad_t_x.mask] = 0.0
grad_t_x = grad_t_x.data
gradx_interp = RectBivariateSpline(coordy, coordx, grad_t_x)
grady_interp = RectBivariateSpline(coordy, coordx, grad_t_y)
yl, xl = optimal_path(gradx_interp, grady_interp, loc_rec, dx)
grid_indx = get_curve(xl, yl, num_interval)
我听说Cython会更快,然后我最近学到了一点并尝试一下。结果只比上面的代码快2,因为我是Cython的新手。下面的代码不完整,我只是编写它进行测试。
import numpy as np
from numpy.core.umath_tests import inner1d
def func(X_interp, Y_interp):
def get_velocity(double x, double y ):
""" return normalized velocity at pos """
cdef double vel[2], norm
a = X_interp(y, x)
vel[0] = a[0][0]
b = Y_interp(y, x)
vel[1] = b[0][0]
# norm = (vel[0]**2 + vel[1]**2)**0.5
# vel[0] = vel[0]/norm
# vel[1] = vel[1]/norm
return vel
def runge_kutta(double x, double y, double ds):
""" Fourth order Runge Kutta point update """
cdef double k1[2], k2[2], k3[2], k4[2], r[2], pos[2]
pos[0] = x; pos[1] = y
k1 = get_velocity(pos[0], pos[1])
k2 = get_velocity(pos[0] - k1[0]/2.0*ds,pos[1] - k1[1]/2.0*ds)
k3 = get_velocity(pos[0] - k2[0]/2.0*ds,pos[1] - k2[1]/2.0*ds)
k4 = get_velocity(pos[0] - k3[0]/2.0*ds,pos[1] - k3[1]/2.0*ds)
cdef size_t i
for i in range(2):
r[i] = pos[i] - ds * (k1[i] + 2*k2[i] + 2*k3[i] + k4[i])/6.0
return r
for i in range(50):
runge_kutta(0, 0, 1.)
# print(runge_kutta(0, 0, 1.))