感谢您对我在我的一项分析中应用的策略的评论/帮助。简而言之,我的情况是:
1) My data have biological origin, collected in a period of 120s, from a
subject receiving, each time, one of possible three stimuli (response label 1
to 3), in a random manner, one stimulus per second (trial). Sampling
frequency is 256 Hz and 61 different sensors (input variables). So, my
dataset has 120x256 rows and 62 columns (1 response label + 61 input
variables);
2) My goal is to identify if there is an underlying pattern for each stimulus.
For that, I would like to use deep learning neural networks to test my
hypothesis, but not in a conventional way (to predict the stimulus from a
single observation/row).
3) My approach is to divide the whole dataset, after shuffling per row
(avoiding any time bias), in training and validation sets (50/50) and then to
run the deep learning algorithm. The division does not segregate trial events
(120), so each training/validation sets should contain data (rows) from the
same trial (but never the same row). If there is a dominant pattern per
stimulus, the validation confusion matrix error should be low. If there is a
dominant pattern per trial, the validation confusion matrix error should be
high. So, the validation confusion matrix error is my indicator of the
presence of a hidden pattern per stimulus;
如果我能提供有关逻辑有效性的任何意见,我将不胜感激。我想强调的是,我并不是想根据行输入来预测刺激。
感谢。
答案 0 :(得分:1)
是的,您可以在交叉验证集中使用分类性能,这超出了在每个类的范例内存在模式或关系的机会。如果在一个单独的,从未见过的测试集中发现类似的性能,那么这个论点会更强。
如果深度神经网络,SVM或任何其他分类器可以比偶然分类更好,则意味着:
因此,如果分类性能超过机会,那么上述3个条件都是正确的。如果没有,那么一个或多个条件可能是错误的。训练变量可能不包含任何有助于预测课程的信息。或者选择预测变量,但是它们和类之间的关系对于分类器来说太复杂了。或者分类器过度学习,而CV集的表现处于偶然或更差的状态。
这是一篇论文(开放访问),它使用类似的逻辑来论证fMRI活动包含一个人正在查看的图像的信息:
Natural Scene Categories Revealed in Distributed Patterns of Activity in the Human Brain
注意:根据所使用的分类器(尤其是DNN&s;但决策树不那么),这只会告诉您如果有模式,它不会告诉您该模式是什么。