的Javascript>
如果您从事数据科学行业,如果您没有正常的分发表,您会感到困扰。我在Stackoverflow中看到了将z-score转换为JavaScript概率的文章。我真正想知道的是这个函数的反向计算。
/**
* @param {number} z - Number of standard deviations from the mean.
*/
function GetZPercent(z) {
// If z is greater than 6.5 standard deviations from the mean
// the number of significant digits will be outside of a reasonable
// range.
if (z < -6.5)
return 0.0;
if (z > 6.5)
return 1.0;
var factK = 1;
var sum = 0;
var term = 1;
var k = 0;
var loopStop = Math.exp(-23);
while (Math.abs(term) > loopStop) {
term = 0.3989422804 * Math.pow(-1, k) * Math.pow(z, k) / (2 * k + 1) /
Math.pow(2, k) * Math.pow(z, k + 1) / factK;
sum += term;
k++;
factK *= k;
}
sum += 0.5;
return sum;
}
&#13;
我对如何将z-score转换为概率感到了解。但是,我不知道如何从javascript中的相应概率计算z得分(标准偏差)。例如,如果我输入0.95(或95%),我可以期望获得2.25标准差。如果输入2.25,上面的代码给出了95%。
答案 0 :(得分:2)
我发现这段代码也有效。使用critz(p)将概率转换为z得分。例如,我们可以预期1.65来自critz(0.95),因为95%对应于z分数中的1.65标准差。
/* The following JavaScript functions for calculating normal and
chi-square probabilities and critical values were adapted by
John Walker from C implementations
written by Gary Perlman of Wang Institute, Tyngsboro, MA
01879. Both the original C code and this JavaScript edition
are in the public domain. */
/* POZ -- probability of normal z value
Adapted from a polynomial approximation in:
Ibbetson D, Algorithm 209
Collected Algorithms of the CACM 1963 p. 616
Note:
This routine has six digit accuracy, so it is only useful for absolute
z values <= 6. For z values > to 6.0, poz() returns 0.0.
*/
var Z_MAX = 6;
function poz(z) {
var y, x, w;
if (z == 0.0) {
x = 0.0;
} else {
y = 0.5 * Math.abs(z);
if (y > (Z_MAX * 0.5)) {
x = 1.0;
} else if (y < 1.0) {
w = y * y;
x = ((((((((0.000124818987 * w
- 0.001075204047) * w + 0.005198775019) * w
- 0.019198292004) * w + 0.059054035642) * w
- 0.151968751364) * w + 0.319152932694) * w
- 0.531923007300) * w + 0.797884560593) * y * 2.0;
} else {
y -= 2.0;
x = (((((((((((((-0.000045255659 * y
+ 0.000152529290) * y - 0.000019538132) * y
- 0.000676904986) * y + 0.001390604284) * y
- 0.000794620820) * y - 0.002034254874) * y
+ 0.006549791214) * y - 0.010557625006) * y
+ 0.011630447319) * y - 0.009279453341) * y
+ 0.005353579108) * y - 0.002141268741) * y
+ 0.000535310849) * y + 0.999936657524;
}
}
return z > 0.0 ? ((x + 1.0) * 0.5) : ((1.0 - x) * 0.5);
}
/* CRITZ -- Compute critical normal z value to
produce given p. We just do a bisection
search for a value within CHI_EPSILON,
relying on the monotonicity of pochisq(). */
function critz(p) {
var Z_EPSILON = 0.000001; /* Accuracy of z approximation */
var minz = -Z_MAX;
var maxz = Z_MAX;
var zval = 0.0;
var pval;
if( p < 0.0 ) p = 0.0;
if( p > 1.0 ) p = 1.0;
while ((maxz - minz) > Z_EPSILON) {
pval = poz(zval);
if (pval > p) {
maxz = zval;
} else {
minz = zval;
}
zval = (maxz + minz) * 0.5;
}
return(zval);
}
答案 1 :(得分:1)
这是一个执行相反计算的函数(z得分概率):
function percentile_z(p) {
var a0= 2.5066282, a1=-18.6150006, a2= 41.3911977, a3=-25.4410605,
b1=-8.4735109, b2= 23.0833674, b3=-21.0622410, b4= 3.1308291,
c0=-2.7871893, c1= -2.2979648, c2= 4.8501413, c3= 2.3212128,
d1= 3.5438892, d2= 1.6370678, r, z;
if (p>0.42) {
r=Math.sqrt(-Math.log(0.5-p));
z=(((c3*r+c2)*r+c1)*r+c0)/((d2*r+d1)*r+1);
} else {
r=p*p;
z=p*(((a3*r+a2)*r+a1)*r+a0)/((((b4*r+b3)*r+b2)*r+b1)*r+1);
}
return z;
}
抓取