我的数据是这样的交易:
ID=c("A123","A123","A123","A123","B456","B456","B456","C789","C789")
item=c("bread", "butter", "milk", "eggs", "meat","milk", "peas", "peas", "meat")
df=data.frame(cbind(ID, item))
ID item
1 A123 bread
2 A123 butter
3 A123 milk
4 A123 eggs
5 B456 meat
6 B456 milk
7 B456 peas
我想提出建议,因此我会转换数据并构建规则
library(arules)
trans = as(split(df$item, df$ID), "transactions")
rules = apriori(trans, parameter = list(support = 0.006, confidence = 0.25,
minlen = 2))
有关购物篮3的客户建议如下:
basket = trans[3]
rulesMatchLHS = is.subset(rules@lhs,basket)
suitableRules = rulesMatchLHS & !(is.subset(rules@rhs,basket))
order.rules = sort(rules[suitableRules], by = "lift")
LIST(order.rules@rhs)[[1]]
[1]“牛奶”
但我怎样才能为所有篮子提出建议?我试过这个,但得到一个错误:
reco=function(x){
rulesMatchLHS = is.subset(rules@lhs,x)
suitableRules = rulesMatchLHS & !(is.subset(rules@rhs,x))
order.rules = sort(rules[suitableRules], by = "lift")
LIST(order.rules@rhs)[[1]]
}
results = lapply(trans, function(x) reco(x))
as.vector(数据)出错: 没有将此S4类强制转换为向量的方法
我如何运行所有篮子的建议?
答案 0 :(得分:1)
试试这个:
from productapp.views import ProductList
from userapp.views import login_user
urlpatterns = [
url(r'^admin/', include(admin.site.urls)),
url(r'^', include(router.urls)),
url(r'^api-auth/', include('rest_framework.urls', namespace='rest_framework')),
url(r'^login$', login_user, name="login"),
url(r'^products$', ProductList.as_view(), name="product-list"),
]
显然,没有将事务类转换为向量的函数。