Emgu CV SURF获得匹配的点坐标

时间:2016-03-28 18:53:41

标签: c# image opencv image-processing emgucv

我正在使用Emgu CV的SURF特性来识别图像中的类似物体。

图像绘制正确,显示在两个图像中找到的所有关键点,类似的点(这是我想要的)和一个矩形(通常为矩形) ,有时只是一条线,覆盖了类似的点。

问题是图像中可以看到相似点,但它们并没有以我想要的格式保存,实际上它们存储在 VectorOfKeyPoint object,它只存储一个指针,以及其他内存数据,这些点存储在内存中(这就是我的想法)。意思是,我无法成对地获得类似点

((img1X,img1Y),(img2X,img2Y))

这将是我正在寻找的,以便我可以稍后使用这些点。 现在,我只能看到结果图像中的点,但我无法得到 他们是成对的。

我正在使用的代码是Emgu CV的示例。

//----------------------------------------------------------------------------
//  Copyright (C) 2004-2016 by EMGU Corporation. All rights reserved.       
//----------------------------------------------------------------------------
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Drawing;
using System.Runtime.InteropServices;
using Emgu.CV;
using Emgu.CV.CvEnum;
using Emgu.CV.Features2D;
using Emgu.CV.Structure;
using Emgu.CV.Util;
#if !__IOS__
using Emgu.CV.Cuda;
#endif
using Emgu.CV.XFeatures2D;

namespace FirstEmgu
{

    public static class DrawMatches
    {
  // --------------------------------
  // ORIGINAL FUNCTION FROM EXAMPLE
  // --------------------------------
        private static void FindMatch(Mat modelImage, Mat observedImage, out long matchTime, out VectorOfKeyPoint modelKeyPoints, out VectorOfKeyPoint observedKeyPoints, VectorOfVectorOfDMatch matches, out Mat mask, out Mat homography)
        {
            int k = 2;
            double uniquenessThreshold = 0.8;
            double hessianThresh = 300;

            Stopwatch watch;
            homography = null;

            modelKeyPoints = new VectorOfKeyPoint();
            observedKeyPoints = new VectorOfKeyPoint();

#if !__IOS__
            if (CudaInvoke.HasCuda)
            {
                CudaSURF surfCuda = new CudaSURF((float)hessianThresh);
                using (GpuMat gpuModelImage = new GpuMat(modelImage))
                //extract features from the object image
                using (GpuMat gpuModelKeyPoints = surfCuda.DetectKeyPointsRaw(gpuModelImage, null))
                using (GpuMat gpuModelDescriptors = surfCuda.ComputeDescriptorsRaw(gpuModelImage, null, gpuModelKeyPoints))
                using (CudaBFMatcher matcher = new CudaBFMatcher(DistanceType.L2))
                {
                    surfCuda.DownloadKeypoints(gpuModelKeyPoints, modelKeyPoints);
                    watch = Stopwatch.StartNew();

                    // extract features from the observed image
                    using (GpuMat gpuObservedImage = new GpuMat(observedImage))
                    using (GpuMat gpuObservedKeyPoints = surfCuda.DetectKeyPointsRaw(gpuObservedImage, null))
                    using (GpuMat gpuObservedDescriptors = surfCuda.ComputeDescriptorsRaw(gpuObservedImage, null, gpuObservedKeyPoints))
                    //using (GpuMat tmp = new GpuMat())
                    //using (Stream stream = new Stream())
                    {
                        matcher.KnnMatch(gpuObservedDescriptors, gpuModelDescriptors, matches, k);

                        surfCuda.DownloadKeypoints(gpuObservedKeyPoints, observedKeyPoints);

                        mask = new Mat(matches.Size, 1, DepthType.Cv8U, 1);
                        mask.SetTo(new MCvScalar(255));
                        Features2DToolbox.VoteForUniqueness(matches, uniquenessThreshold, mask);

                        int nonZeroCount = CvInvoke.CountNonZero(mask);
                        if (nonZeroCount >= 4)
                        {
                            nonZeroCount = Features2DToolbox.VoteForSizeAndOrientation(modelKeyPoints, observedKeyPoints,
                               matches, mask, 1.5, 20);
                            if (nonZeroCount >= 4)
                                homography = Features2DToolbox.GetHomographyMatrixFromMatchedFeatures(modelKeyPoints,
                                   observedKeyPoints, matches, mask, 2);
                        }
                    }
                    watch.Stop();
                }
            }
            else
#endif
            {
                using (UMat uModelImage = modelImage.ToUMat(AccessType.Read))
                using (UMat uObservedImage = observedImage.ToUMat(AccessType.Read))
                {
                    SURF surfCPU = new SURF(hessianThresh);
                    //extract features from the object image
                    UMat modelDescriptors = new UMat();
                    surfCPU.DetectAndCompute(uModelImage, null, modelKeyPoints, modelDescriptors, false);

                    watch = Stopwatch.StartNew();

                    // extract features from the observed image
                    UMat observedDescriptors = new UMat();
                    surfCPU.DetectAndCompute(uObservedImage, null, observedKeyPoints, observedDescriptors, false);
                    BFMatcher matcher = new BFMatcher(DistanceType.L2);
                    matcher.Add(modelDescriptors);

                    matcher.KnnMatch(observedDescriptors, matches, k, null);
                    mask = new Mat(matches.Size, 1, DepthType.Cv8U, 1);
                    mask.SetTo(new MCvScalar(255));
                    Features2DToolbox.VoteForUniqueness(matches, uniquenessThreshold, mask);

                    int nonZeroCount = CvInvoke.CountNonZero(mask);
                    if (nonZeroCount >= 4)
                    {
                        nonZeroCount = Features2DToolbox.VoteForSizeAndOrientation(modelKeyPoints, observedKeyPoints,
                           matches, mask, 1.5, 20);
                        if (nonZeroCount >= 4)
                            homography = Features2DToolbox.GetHomographyMatrixFromMatchedFeatures(modelKeyPoints,
                               observedKeyPoints, matches, mask, 2);
                    }

                    watch.Stop();
                }
            }
            matchTime = watch.ElapsedMilliseconds;
        }
        // --------------------------------
        // ORIGINAL FUNCTION FROM EXAMPLE
        // --------------------------------
        /// <summary>
        /// Draw the model image and observed image, the matched features and homography projection.
        /// </summary>
        /// <param name="modelImage">The model image</param>
        /// <param name="observedImage">The observed image</param>
        /// <param name="matchTime">The output total time for computing the homography matrix.</param>
        /// <returns>The model image and observed image, the matched features and homography projection.</returns>
        public static Mat Draw(Mat modelImage, Mat observedImage, out long matchTime)
        {
            Mat homography;
            VectorOfKeyPoint modelKeyPoints;
            VectorOfKeyPoint observedKeyPoints;
            using (VectorOfVectorOfDMatch matches = new VectorOfVectorOfDMatch())
            {
                Mat mask;
                FindMatch(modelImage, observedImage, out matchTime, out modelKeyPoints, out observedKeyPoints, matches,
                   out mask, out homography);

                //Draw the matched keypoints
                Mat result = new Mat();
                Features2DToolbox.DrawMatches(modelImage, modelKeyPoints, observedImage, observedKeyPoints,
                   matches, result, new MCvScalar(255, 255, 255), new MCvScalar(255, 255, 255), mask);

                #region draw the projected region on the image

                if (homography != null)
                {
                    //draw a rectangle along the projected model
                    Rectangle rect = new Rectangle(Point.Empty, modelImage.Size);
                    PointF[] pts = new PointF[]
               {
                  new PointF(rect.Left, rect.Bottom),
                  new PointF(rect.Right, rect.Bottom),
                  new PointF(rect.Right, rect.Top),
                  new PointF(rect.Left, rect.Top)
               };
                    pts = CvInvoke.PerspectiveTransform(pts, homography);

                    Point[] points = Array.ConvertAll<PointF, Point>(pts, Point.Round);
                    using (VectorOfPoint vp = new VectorOfPoint(points))
                    {
                        CvInvoke.Polylines(result, vp, true, new MCvScalar(255, 0, 0, 255), 5);
                    }

                }

                #endregion

                return result;

            }
        }

        // ----------------------------------
        // WRITTEN BY MYSELF
        // ----------------------------------
        // Returns 4 points (usually rectangle) of similar points
        // but can't be used, since sometimes this is a line (negative 
        // points)
        public static Point[] FindPoints(Mat modelImage, Mat observedImage, out long matchTime)
        {
            Mat homography;
            VectorOfKeyPoint modelKeyPoints;
            VectorOfKeyPoint observedKeyPoints;
            using (VectorOfVectorOfDMatch matches = new VectorOfVectorOfDMatch())
            {
                Mat mask;
                FindMatch(modelImage, observedImage, out matchTime, out modelKeyPoints, out observedKeyPoints, matches,
                   out mask, out homography);

                //Draw the matched keypoints
                Mat result = new Mat();
                Features2DToolbox.DrawMatches(modelImage, modelKeyPoints, observedImage, observedKeyPoints,
                   matches, result, new MCvScalar(255, 255, 255), new MCvScalar(255, 255, 255), mask);

                Point[] points = null;
                if (homography != null)
                {
                    //draw a rectangle along the projected model
                    Rectangle rect = new Rectangle(Point.Empty, modelImage.Size);
                    PointF[] pts = new PointF[]
               {
                  new PointF(rect.Left, rect.Bottom),
                  new PointF(rect.Right, rect.Bottom),
                  new PointF(rect.Right, rect.Top),
                  new PointF(rect.Left, rect.Top)
               };
                    pts = CvInvoke.PerspectiveTransform(pts, homography);

                    points = Array.ConvertAll<PointF, Point>(pts, Point.Round);

                }

                return points;
            }
        }
    }
}

修改

我设法从这样的匹配对象中获得了一些积分:

Features2DToolbox.DrawMatches(modelImage, modelKeyPoints, observedImage, observedKeyPoints,
                   matches, result, new MCvScalar(255, 255, 255), new MCvScalar(255, 255, 255), mask);

                for (int i = 0; i < matches.Size; i++)
                {
                    var a = matches[i].ToArray();
                    foreach (var e in a)
                    {
                        Point p = new Point(e.TrainIdx, e.QueryIdx);
                        Console.WriteLine(string.Format("Point: {0}", p));
                    }
                    Console.WriteLine("-----------------------");
                }

我认为这应该得到我的观点。我设法让它在python中工作,代码差别不大。问题是返回的点太多了。事实上,这让我回到Y上的所有观点。

示例

(45,1),(67,1)

(656,2),(77,2)

...

虽然我可能很接近,但它并没有得到我想要的分数。任何建议都表示赞赏。

编辑2 这个问题:Find interest point in surf Detector Algorithm与我的需求非常相似。只有一个答案,但它没有说明如何获得匹配的点坐标。这就是我需要的,如果两个图像中都有一个物体,从两个图像中获取物体点的坐标。

2 个答案:

答案 0 :(得分:4)

坐标不是由TrainIdx和QueryIdx组成的,它们是KeyPoints的索引。这将给出模型和观察图像之间匹配的像素坐标。

for (int i = 0; i < matches.Size; i++)
{
    var arrayOfMatches = matches[i].ToArray();
    if (mask.GetData(i)[0] == 0) continue;
    foreach (var match in arrayOfMatches)
    {
        var matchingModelKeyPoint = modelKeyPoints[match.TrainIdx];
        var matchingObservedKeyPoint = observedKeyPoints[match.QueryIdx];
        Console.WriteLine("Model coordinate '" + matchingModelKeyPoint.Point + "' matches observed coordinate '" + matchingObservedKeyPoint.Point + "'.");
    }
}

arrayOfMatches中的项目数等于K的值。我理解最低距离的匹配是最好的。

答案 1 :(得分:2)

FindMatch函数中,每对点都由函数VoteForUniqueness验证。此验证的结果存储在mask

所以你要做的就是检查匹配是否有效:

for (int i = 0; i < matches.Size; i++)
{
    var a = matches[i].ToArray();
    if (mask.GetData(i)[0] == 0)
        continue;
    foreach (var e in a)
    {
        Point p = new Point(e.TrainIdx, e.QueryIdx);
        Console.WriteLine(string.Format("Point: {0}", p));
    }
    Console.WriteLine("-----------------------");
}