numpy数组中某些行的随机排序

时间:2016-03-24 14:01:32

标签: python arrays numpy shuffle

我想在numpy数组中仅对某些行进行排序。这些行将始终是连续的(例如,洗牌行23-80)。每行中元素的数量可以从1(使得数组实际为1D)变为100。

下面是示例代码,用于演示我如何看待方法shuffle_rows()可以正常工作。我如何设计这样一种方法来有效地进行洗牌?

import numpy as np
>>> a = np.arange(20).reshape(4, 5)
>>> a
array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14],
       [15, 16, 17, 18, 19]])

>>> shuffle_rows(a, [1, 3]) # including rows 1, 2 and 3 in the shuffling
array([[ 0,  1,  2,  3,  4],
       [15, 16, 17, 18, 19],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14]])

1 个答案:

答案 0 :(得分:4)

您可以使用np.random.shuffle。这会对行本身进行混洗,而不是行中的元素。

来自docs

  

此函数仅沿多维数组的第一个索引重新排列数组

举个例子:

import numpy as np


def shuffle_rows(arr,rows):
    np.random.shuffle(arr[rows[0]:rows[1]+1])

a = np.arange(20).reshape(4, 5)

print(a)
# array([[ 0,  1,  2,  3,  4],
#        [ 5,  6,  7,  8,  9],
#        [10, 11, 12, 13, 14],
#        [15, 16, 17, 18, 19]])

shuffle_rows(a,[1,3])

print(a)
#array([[ 0,  1,  2,  3,  4],
#       [10, 11, 12, 13, 14],
#       [15, 16, 17, 18, 19],
#       [ 5,  6,  7,  8,  9]])

shuffle_rows(a,[1,3])

print(a)
#array([[ 0,  1,  2,  3,  4],
#       [10, 11, 12, 13, 14],
#       [ 5,  6,  7,  8,  9],
#       [15, 16, 17, 18, 19]])