我试图使绘制的点在已知半径和中心的圆内移动。目前我能够在边界内生成点,但现在我需要让它们移动。
我有以下脚本来生成粒子的初始位置。
function [particle_gen] = generate(n,centre,radius)
%generates n particles in a circle with specified centre and radius
angle = 2 * pi * rand(n,1);
r = radius * sqrt(rand(n,1));
X = r.*cos(angle) + centre(1);
Y = r.*sin(angle) + centre(2);
plot(X,Y,'.k')
end
我想为它们设置动画,使粒子以恒定的速度沿直线行进,直到它们撞到圆形边界并反弹。我需要这一切都发生在同一个情节中。
答案 0 :(得分:10)
好的,这个问题有几个方面,我将分别解决。
就创建情节和更新情节值的后勤而言,您可以使用MATLAB's handle graphics完成所有这些操作。如果您创建绘图对象,则可以使用returned handle绘图来更新绘图。
plt = plot(x, y, 'k.');
set(plt, 'XData', newx, 'YData', newy)
在您的情况下,newx
和newy
值将在循环中计算,然后您可以分配它们。通过这样做,您不会不断创建新的图形对象,而使用MATLAB可能会非常昂贵。
由于您正在进行大量计算,因此您每次都需要使用drawnow
来强制MATLAB渲染图形。
您需要计算要更新绘图的xnew
和ynew
值。您可以通过多种方式确定这些轨迹,但我在此提出了一种方法。
我已经实施了上述步骤。虽然这可能不是计算效率最高的方法,但它提供了所需的结果。
function bounce(npts, vmin, vmax, radius, center)
% Initial direction/velocity of the points
direction = rand(npts, 1) * 2 *pi;
velocity = (rand(npts, 1) * (vmax - vmin)) + vmin;
% Create random starting locations within the circle
theta = rand(npts, 1) * 2*pi;
r = radius * sqrt(rand(npts, 1));
XY = [r .* cos(theta(:)) + center(1), ...
r .* sin(theta(:)) + center(2)];
% Initial plot objects
hfig = figure('Color', 'w');
hax = axes('Parent', hfig);
% Plot the dots as black markers
hdots = plot(XY(:,1), XY(:,2), ...
'Parent', hax, ...
'Marker', '.', ...
'Color', 'k', ...
'LineStyle', 'none', ...
'MarkerSize', 12);
hold(hax, 'on')
axis(hax, 'equal')
% Plot the circle as a reference
t = linspace(0, 2*pi, 100);
plot(radius * cos(t) + center(1), ...
radius * sin(t) + center(2))
% Keep simulating until we actually close the window
while ishghandle(hfig);
% Determine new dot locations
[XY, direction] = step(XY, direction, velocity, radius, center);
% Update the dot plot to reflect new locations
set(hdots, 'XData', XY(:,1), 'YData', XY(:,2))
% Force a redraw
drawnow
end
end
function [XYnew, direction] = step(XY, direction, velocity, radius, center)
% Compute the next position of the points
DX = [cos(direction(:)) .* velocity, ...
sin(direction(:)) .* velocity];
XYnew = XY + DX;
% Now check that they are all inside circle
isOutside = sum(bsxfun(@minus, XYnew, center).^2, 2) > radius^2;
% The ones that are outside should "bounce" back into the circle
if any(isOutside)
orig = XY(isOutside,:);
new = XYnew(isOutside,:);
delta = -DX(isOutside,:);
% Find intersection of this path with the circle
% Taken from: https://math.stackexchange.com/a/311956
a = sum(delta.^2, 2);
b = sum(2 .* delta .* bsxfun(@minus, orig, center), 2);
c = sum(bsxfun(@minus, orig, center).^2, 2) - radius^2;
t = (2 * c) ./ (-b + sqrt(b.^2 - 4 .* a .* c));
xintersect = orig(:,1) + delta(:,1) .* t;
yintersect = orig(:,2) + delta(:,2) .* t;
% Get tangent at this intersection (slope/intercept form)
m = - 1 ./ ((yintersect - center(2)) ./ (xintersect - center(1)));
b = yintersect - m .* xintersect;
% "Reflect" outside points across the tangent line to "bounce" them
% Equations from: https://stackoverflow.com/a/3307181/670206
d = (new(:,1) + (new(:,2) - b) .* m) ./ (1 + m.^2);
XYnew(isOutside,1) = 2 * d - new(:,1);
XYnew(isOutside,2) = 2 .* d .* m - new(:,2) + 2 .* b;
% Recompute the direction of the particles that "bounced"
direction(isOutside) = atan2(XYnew(isOutside,2) - yintersect, ...
XYnew(isOutside,1) - xintersect);
end
end
通过运行以下命令,我可以获得以下结果。
bounce(100, 0.01, 0.2, 5, [0 0]);
答案 1 :(得分:0)
这不是一个小问题。您当前的方法为您提供初始起始位置。您还需要生成起始“速度”,我将其称为VX
和VY
。
也就是说,存储X,Y
位置数组以及VX
和VY
方向数组,其中VX
和VY
的每一行都有一个常量规范。然后,您会在每次迭代时按相应的X,Y
和VX
递增每个位置VY
,然后检查您是否在墙上,然后更改VX
和{{1对于点击墙壁的方式,它们会“弹回”它。
希望这能让你开始!祝你好运。