我试图实施有状态的RNN,但它一直在问我一个完整的input_shape(包括批量大小)"。在input_shape和input_batch_size参数中尝试了不同的东西,但似乎没有人工作。任何人都能发光吗?
代码:
model=Sequential()
model.add(SimpleRNN(init='uniform',output_dim=80,input_dim=len(pred_frame.columns),stateful=True,batch_input_shape=(len(pred_frame.index),len(pred_frame.columns)),input_shape=(len(pred_frame.index),len(pred_frame.columns))))
model.add(Dense(output_dim=200,input_dim=len(pred_frame.columns),init="glorot_uniform"))
model.add(Dense(output_dim=1))
model.compile(loss="mse", class_mode='scalar', optimizer="sgd")
model.fit(X=predictor_train, y=target_train, batch_size=len(pred_frame.index),show_accuracy=True)
回溯:
File "/Users/file.py", line 1483, in Pred
model.add(SimpleRNN(init='uniform',output_dim=80,input_dim=len(pred_frame.columns),stateful=True,batch_input_shape=(len(pred_frame.index),len(pred_frame.columns)),input_shape=(len(pred_frame.index),len(pred_frame.columns))))
File "/Library/Python/2.7/site-packages/keras/layers/recurrent.py", line 194, in __init__
super(SimpleRNN, self).__init__(**kwargs)
File "/Library/Python/2.7/site-packages/keras/layers/recurrent.py", line 97, in __init__
super(Recurrent, self).__init__(**kwargs)
File "/Library/Python/2.7/site-packages/keras/layers/core.py", line 43, in __init__
self.set_input_shape((None,) + tuple(kwargs['input_shape']))
File "/Library/Python/2.7/site-packages/keras/layers/core.py", line 141, in set_input_shape
self.build()
File "/Library/Python/2.7/site-packages/keras/layers/recurrent.py", line 199, in build
self.reset_states()
File "/Library/Python/2.7/site-packages/keras/layers/recurrent.py", line 221, in reset_states
'(including batch size).')
Exception: If a RNN is stateful, a complete input_shape must be provided (including batch size).
答案 0 :(得分:3)
您只需提供batch_input_shape =参数,不输入_shape参数。此外,为避免输入形状错误,请确保训练数据大小是batch_size的倍数。最后,如果您使用验证拆分,则必须确保两个拆分也是batch_size的倍数。
# ensure data size is a multiple of batch_size
data_size=data_size-data_size%batch_size
# ensure validation splits are multiples of batch_size
increment=float(batch_size)/len(data_size)
val_split=float(int(val_split/(increment))) * increment
答案 1 :(得分:0)
在您对SimpleRNN
的定义中,移除input_dim
和input_shape
,请设置:
batch_input_shape = (Number_Of_sequences, Size_Of_Each_Sequence,
Shape_Of_Element_In_Each_Sequence)
batch_input_shape
应该是一个长度至少为3的元组。
如果您逐个传递序列,请设置:
Number_Of_sequences = 1
如果序列的大小未修复,请设置:
Size_Of_Each_Sequence = None