python如何用零填充numpy数组

时间:2016-03-02 15:21:37

标签: python arrays numpy pad

我想知道如何使用带有numpy版本1.5.0的python 2.6.6用零填充2D numpy数组。抱歉!但这些是我的局限。因此我无法使用np.pad。例如,我想用{0}填充a,使其形状与b匹配。我之所以这么做是因为我能做到:

b-a

这样

>>> a
array([[ 1.,  1.,  1.,  1.,  1.],
       [ 1.,  1.,  1.,  1.,  1.],
       [ 1.,  1.,  1.,  1.,  1.]])
>>> b
array([[ 3.,  3.,  3.,  3.,  3.,  3.],
       [ 3.,  3.,  3.,  3.,  3.,  3.],
       [ 3.,  3.,  3.,  3.,  3.,  3.],
       [ 3.,  3.,  3.,  3.,  3.,  3.]])
>>> c
array([[1, 1, 1, 1, 1, 0],
       [1, 1, 1, 1, 1, 0],
       [1, 1, 1, 1, 1, 0],
       [0, 0, 0, 0, 0, 0]])

我能想到这样做的唯一方法是追加,但这看起来很难看。是否有一个更清洁的解决方案可能使用b.shape

编辑, 谢谢MSeiferts的回答。我不得不把它清理一下,这就是我得到的:

def pad(array, reference_shape, offsets):
    """
    array: Array to be padded
    reference_shape: tuple of size of ndarray to create
    offsets: list of offsets (number of elements must be equal to the dimension of the array)
    will throw a ValueError if offsets is too big and the reference_shape cannot handle the offsets
    """

    # Create an array of zeros with the reference shape
    result = np.zeros(reference_shape)
    # Create a list of slices from offset to offset + shape in each dimension
    insertHere = [slice(offsets[dim], offsets[dim] + array.shape[dim]) for dim in range(array.ndim)]
    # Insert the array in the result at the specified offsets
    result[insertHere] = array
    return result

6 个答案:

答案 0 :(得分:86)

非常简单,您可以使用参考形状创建一个包含零的数组:

result = np.zeros(b.shape)
# actually you can also use result = np.zeros_like(b) 
# but that also copies the dtype not only the shape

然后将数组插入所需的位置:

result[:a.shape[0],:a.shape[1]] = a

并且你已经填补了它:

print(result)
array([[ 1.,  1.,  1.,  1.,  1.,  0.],
       [ 1.,  1.,  1.,  1.,  1.,  0.],
       [ 1.,  1.,  1.,  1.,  1.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.]])

如果您定义应插入左上角元素的位置

,也可以使它更通用一些
result = np.zeros_like(b)
x_offset = 1  # 0 would be what you wanted
y_offset = 1  # 0 in your case
result[x_offset:a.shape[0]+x_offset,y_offset:a.shape[1]+y_offset] = a
result

array([[ 0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  1.,  1.,  1.,  1.,  1.],
       [ 0.,  1.,  1.,  1.,  1.,  1.],
       [ 0.,  1.,  1.,  1.,  1.,  1.]])

但请注意,您的偏移量不会超过允许范围。例如,对于x_offset = 2,这将失败。

如果您有任意数量的维度,则可以定义切片列表以插入原始数组。我发现有趣的是玩一下并创建一个填充函数,可以填充(带偏移)一个任意形状的数组,只要数组和引用具有相同的维数并且偏移量不是太大。

def pad(array, reference, offsets):
    """
    array: Array to be padded
    reference: Reference array with the desired shape
    offsets: list of offsets (number of elements must be equal to the dimension of the array)
    """
    # Create an array of zeros with the reference shape
    result = np.zeros(reference.shape)
    # Create a list of slices from offset to offset + shape in each dimension
    insertHere = [slice(offset[dim], offset[dim] + array.shape[dim]) for dim in range(a.ndim)]
    # Insert the array in the result at the specified offsets
    result[insertHere] = a
    return result

以及一些测试用例:

import numpy as np

# 1 Dimension
a = np.ones(2)
b = np.ones(5)
offset = [3]
pad(a, b, offset)

# 3 Dimensions

a = np.ones((3,3,3))
b = np.ones((5,4,3))
offset = [1,0,0]
pad(a, b, offset)

答案 1 :(得分:76)

NumPy 1.7.0(添加numpy.pad时)已经很老了(它于2013年发布)所以即使问题是没有使用这个功能我想的了解如何使用numpy.pad实现这一目标可能很有用。

实际上非常简单:

>>> import numpy as np
>>> a = np.array([[ 1.,  1.,  1.,  1.,  1.],
...               [ 1.,  1.,  1.,  1.,  1.],
...               [ 1.,  1.,  1.,  1.,  1.]])
>>> np.pad(a, [(0, 1), (0, 1)], mode='constant')
array([[ 1.,  1.,  1.,  1.,  1.,  0.],
       [ 1.,  1.,  1.,  1.,  1.,  0.],
       [ 1.,  1.,  1.,  1.,  1.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.]])

在这种情况下,我使用0mode='constant'的默认值。但它也可以通过显式传递来指定:

>>> np.pad(a, [(0, 1), (0, 1)], mode='constant', constant_values=0)
array([[ 1.,  1.,  1.,  1.,  1.,  0.],
       [ 1.,  1.,  1.,  1.,  1.,  0.],
       [ 1.,  1.,  1.,  1.,  1.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.]])

以防第二个参数([(0, 1), (0, 1)])似乎令人困惑:每个列表项(在本例中为元组)对应于维度,其中的项目表示之前的填充(第一个元素)和之后(第二个元素)。所以:

[(0, 1), (0, 1)]
         ^^^^^^------ padding for second dimension
 ^^^^^^-------------- padding for first dimension

  ^------------------ no padding at the beginning of the first axis
     ^--------------- pad with one "value" at the end of the first axis.

在这种情况下,第一个和第二个轴的填充是相同的,所以也可以传入2元组:

>>> np.pad(a, (0, 1), mode='constant')
array([[ 1.,  1.,  1.,  1.,  1.,  0.],
       [ 1.,  1.,  1.,  1.,  1.,  0.],
       [ 1.,  1.,  1.,  1.,  1.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.]])

如果之前和之后的填充相同,甚至可以省略元组(虽然在这种情况下不适用):

>>> np.pad(a, 1, mode='constant')
array([[ 0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  1.,  1.,  1.,  1.,  1.,  0.],
       [ 0.,  1.,  1.,  1.,  1.,  1.,  0.],
       [ 0.,  1.,  1.,  1.,  1.,  1.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.]])

或者如果之前和之后的填充相同但轴不同,您也可以省略内部元组中的第二个参数:

>>> np.pad(a, [(1, ), (2, )], mode='constant')
array([[ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  1.,  1.,  1.,  1.,  1.,  0.,  0.],
       [ 0.,  0.,  1.,  1.,  1.,  1.,  1.,  0.,  0.],
       [ 0.,  0.,  1.,  1.,  1.,  1.,  1.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.]])

但是我倾向于总是使用明确的一个,因为它只是容易犯错误(当NumPys的期望与你的意图不同时):

>>> np.pad(a, [1, 2], mode='constant')
array([[ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  1.,  1.,  1.,  1.,  1.,  0.,  0.],
       [ 0.,  1.,  1.,  1.,  1.,  1.,  0.,  0.],
       [ 0.,  1.,  1.,  1.,  1.,  1.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.]])

这里NumPy认为你想要在所有轴之前填充1个元素,在每个轴之后填充2个元素!即使您打算在轴1中填充1个元素,也为轴2填充2个元素。

我使用了元组列表作为填充,请注意,这只是"我的约定",您还可以使用列表或元组列表,甚至是元组的元组。 NumPy只检查参数的长度(或者如果它没有长度)和每个项目的长度(或者如果它有长度)!

答案 2 :(得分:6)

我了解您的主要问题是您需要计算d=b-a,但您的数组有不同的大小。不需要中间填充c

你可以在没有填充的情况下解决这个问题:

import numpy as np

a = np.array([[ 1.,  1.,  1.,  1.,  1.],
              [ 1.,  1.,  1.,  1.,  1.],
              [ 1.,  1.,  1.,  1.,  1.]])

b = np.array([[ 3.,  3.,  3.,  3.,  3.,  3.],
              [ 3.,  3.,  3.,  3.,  3.,  3.],
              [ 3.,  3.,  3.,  3.,  3.,  3.],
              [ 3.,  3.,  3.,  3.,  3.,  3.]])

d = b.copy()
d[:a.shape[0],:a.shape[1]] -=  a

print d

输出:

[[ 2.  2.  2.  2.  2.  3.]
 [ 2.  2.  2.  2.  2.  3.]
 [ 2.  2.  2.  2.  2.  3.]
 [ 3.  3.  3.  3.  3.  3.]]

答案 3 :(得分:0)

如果您需要向数组添加1s的栅栏:

>>> mat = np.zeros((4,4), np.int32)
>>> mat
array([[0, 0, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 0]])
>>> mat[0,:] = mat[:,0] = mat[:,-1] =  mat[-1,:] = 1
>>> mat
array([[1, 1, 1, 1],
       [1, 0, 0, 1],
       [1, 0, 0, 1],
       [1, 1, 1, 1]])

答案 4 :(得分:0)

我知道我有点晚了,但是如果您想执行相对填充(aka边缘填充),可以通过以下方法实现它。请注意,分配的第一个实例会导致零填充,因此您可以将其用于零填充和相对填充(这是将原始数组的边值复制到填充数组中的地方)。

def replicate_padding(arr):
    """Perform replicate padding on a numpy array."""
    new_pad_shape = tuple(np.array(arr.shape) + 2) # 2 indicates the width + height to change, a (512, 512) image --> (514, 514) padded image.
    padded_array = np.zeros(new_pad_shape) #create an array of zeros with new dimensions
    
    # perform replication
    padded_array[1:-1,1:-1] = arr        # result will be zero-pad
    padded_array[0,1:-1] = arr[0]        # perform edge pad for top row
    padded_array[-1, 1:-1] = arr[-1]     # edge pad for bottom row
    padded_array.T[0, 1:-1] = arr.T[0]   # edge pad for first column
    padded_array.T[-1, 1:-1] = arr.T[-1] # edge pad for last column
    
    #at this point, all values except for the 4 corners should have been replicated
    padded_array[0][0] = arr[0][0]     # top left corner
    padded_array[-1][0] = arr[-1][0]   # bottom left corner
    padded_array[0][-1] = arr[0][-1]   # top right corner 
    padded_array[-1][-1] = arr[-1][-1] # bottom right corner

    return padded_array

复杂度分析:

对此的最佳解决方案是numpy的pad方法。 平均5次运行后,具有相对填充的np.pad仅比上面定义的功能好8%。这表明这是相对填充和零填充的最佳方法。


#My method, replicate_padding
start = time.time()
padded = replicate_padding(input_image)
end = time.time()
delta0 = end - start

#np.pad with edge padding
start = time.time()
padded = np.pad(input_image, 1, mode='edge')
end = time.time()
delta = end - start


print(delta0) # np Output: 0.0008790493011474609 
print(delta)  # My Output: 0.0008130073547363281
print(100*((delta0-delta)/delta)) # Percent difference: 8.12316715542522%

答案 5 :(得分:0)

Tensorflow 还实现了用于调整/填充图像大小的函数 tf.image.pad tf.pad

padded_image = tf.image.pad_to_bounding_box(image, top_padding, left_padding, target_height, target_width)

padded_image = tf.pad(image, paddings, "CONSTANT")

这些函数的工作方式与 tensorflow 的其他输入管道功能一样,对于机器学习应用程序来说效果会更好。