从阵列中切出一个pice并用零填充它

时间:2016-09-08 07:56:35

标签: arrays python-2.7 numpy pad

我需要从N-dim数组中剪切给定大小和给定位置的一部分。 如果部件很大,我需要用零填充它以达到给定的大小。

为简单起见,这些示例是2D格式。

给定的矩阵:

[[1 8 3 3 8]
 [5 8 6 7 6]
 [8 3 5 6 5]
 [2 6 2 4 6]
 [6 5 3 7 4]]

我想从索引(1,2)开始削减[2,4]部分, 我切割的部分尺寸不够大,所以填充 需要零。 想要的结果:

[[6 7 6 0]
 [5 6 5 0]]

我设法编写丑陋而不是N-dim代码来做到这一点。

# set example numbers
matrix =  numpy.random.randint(low=1, high=9, size=(5,5))
matrix_size = np.array(matrix.shape)

# size of the part we want to have in the end
size = np.array([2, 4])
# starting point of the cut
mini = [1, 2]

#calculating max index (in the given matrix) for the part we want to cut
maxi = np.add(size - 1 , mini)
cut_max_ind = np.minimum(maxi, matrix_size - 1) + 1

# copy from matrix to cut
# ??? a way to generalize it for N-dim ???
cut = matrix[mini[0]:cut_max_ind[0], mini[1]:cut_max_ind[1]]

#culculate the padding size
padding =  np.add(matrix_size - 1, maxi*-1)
padding_size = np.minimum(np.zeros((matrix.ndim), dtype=np.uint8), padding) * -1

for j in range(0, matrix.ndim):

    if (padding_size[j]):
        pad_width = size
        pad_width[j] = padding_size[j]
        pad_pice = np.zeros((pad_width), dtype = np.uint8)
        cut = np.append(cut, pad_pice, axis = j)

print "matrix"
print matrix
print "cut"
print cut

有任何改进和概括的想法吗?

1 个答案:

答案 0 :(得分:0)

通过预先分配一个零数组然后修改切片以满足您的需要,您可以更轻松地解决这个问题:

List

或者在4D示例中

 select TOPIC,SEQ,INFO FROM HELP WHERE ROWNUM <=150

如果您不熟悉切片:

a = numpy.array([
    [1, 8, 3, 3, 8],
    [5, 8, 6, 7, 6],
    [8, 3, 5, 6, 5],
    [2, 6, 2, 4, 6],
    [6, 5, 3, 7, 4],
])

def extract_piece(array, in_idx):
    # make sure number of dimensions match
    assert array.ndim == len(in_idx)
    # preallocate output array
    out = numpy.zeros([i.stop - i.start for i in in_idx], dtype=array.dtype)

    # modify reading slices to not exceed bounds
    in_idx = [slice(i.start, min(i.stop, s), i.step) for s, i in zip(array.shape, in_idx)]
    # modify writing slices to fit size of read data
    out_idx = [slice(0, i.stop - i.start) for i in in_idx]

    # Copy data
    out[out_idx] = array[in_idx]
    return out

print a
print extract_piece(a, (slice(1, 3), slice(2, 6)))

相同
extract_piece(
    numpy.random.rand(4, 4, 4, 4),  # 4D data
    (
        slice(0,2),  # 1st dimension
        slice(0,4),  # 2nd dimension
        slice(0,6),  # 3rd dimension
        slice(0,1),  # 4th dimension
    )
)