我想通过计算每个索引组合的值来创建特定大小的3D矩阵。矩阵中的每个值都是符号的。
我到目前为止所做的尝试:
import numpy as np
import sympy as sp
var1 = np.arange(1,10,2)
var2 = np.arange(1,10,2)
var3 = np.arange(20,50,5)
myMatrix = np.zeros(shape = (len(var1), len(var2), len(var3)))
t = sp.symbols('t')
for ii in range(len(var1)):
for jj in range(len(var2)):
for kk in range(len(var3)):
myMatrix[ii][jj][kk] = var1[ii] * var2[jj] * var3[kk] * t
这给了我错误:
TypeError:无法将表达式转换为float
据我所知,这是因为结合了numpy和sympy。因此,我试过了:
myMatrix = sp.MatrixSymbol('temp', len(var1), len(var2), len(var3))
而不是:
myMatrix = np.zeros(shape = (len(var1), len(var2), len(var3)))
并收到错误:
TypeError: new ()需要4个参数(给定5个)
总而言之,我的问题是:如何创建一个包含内部任何变量的3D矩阵,以便能够在嵌套循环中使用它,这涉及符号计算?
(这是我在这个社区的第一篇文章,所以如果我做错了,请告诉我。)
答案 0 :(得分:3)
您收到的第一个错误是,正如您所建议的那样,因为您尝试将sympy
类型对象保存到类型为number的numpy
零数组中。一种选择是使用numpy
对象数组,其工作方式如下,
import numpy as np
import sympy as sp
var1 = np.arange(1,10,2)
var2 = np.arange(1,10,2)
var3 = np.arange(20,50,5)
myMatrix = np.empty((len(var1), len(var2), len(var3)), dtype=object)
t = sp.symbols('t')
for ii in range(len(var1)):
for jj in range(len(var2)):
for kk in range(len(var3)):
myMatrix[ii][jj][kk] = var1[ii] * var2[jj] * var3[kk] * t
虽然对于大尺寸,这不是太有效,而不是numpy应该工作的方式。对于sympy数组,这可能是唯一的方法,但似乎至少在我的sympy版本(0.7.1.rc1)中,不支持3D数组。对于
myMatrix = sp.zeros((len(var1), len(var2), len(var3)))
我收到以下错误
ValueError: Matrix dimensions should be a two-element tuple of ints or a single int!