使用boost :: asio

时间:2016-02-21 00:21:47

标签: c++ boost udp client-server boost-asio

我是C ++ boost库的新手。我已经设法使用boost asio库实现UDP服务器和客户端。目前在我的示例程序中,我启动UDP服务器,然后尝试使用UDP客户端进行连接。一旦客户端连接并发送一些数据,服务器就会响应一个随机生成的字符串,我已将其转换为十六进制并将其打印出来。一旦收到字符串,UDP客户端就会调用destruct-or并退出。

我的代码在udp_server.hpp和udp_client.hpp

下面给出
#include "udp_server.hpp"
#include <iostream>
#include <exception>
#include <boost/array.hpp>
#include <boost/asio.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/enable_shared_from_this.hpp>
#include <boost/asio.hpp>
#include <boost/bind.hpp>
#include <algorithm>
#include <sstream>
#include <iomanip>
const int ARG_COUNT = 2;
const int LOWEST_PORT = 1024;
const int HIGHEST_PORT = 65000;

static char message_array[8192];

void gen_random_string(char *s, const int len) 
{
    static const char alphanum[] =
        "0123456789"
        "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
        "abcdefghijklmnopqrstuvwxyz";

    for (int i = 0; i < len; ++i) {
        s[i] = alphanum[rand() % (sizeof(alphanum) - 1)];
    }
    s[len] = 0;
}


class udp_server
{
public:
    udp_server(boost::asio::io_service& io_service,int port_number)
        : socket_(io_service, boost::asio::ip::udp::udp::endpoint(boost::asio::ip::udp::udp::v4(), port_number))
    {
        std::cout << "UDP server listening on " << port_number << std::endl;
        start_receive();
    }

private:
    void start_receive()
    {
        socket_.async_receive_from(
            boost::asio::buffer(recv_buffer_), remote_endpoint_,
            boost::bind(&udp_server::handle_receive, this,
                        boost::asio::placeholders::error,
                        boost::asio::placeholders::bytes_transferred));
    }

    void handle_receive(const boost::system::error_code& error,
                        std::size_t /*bytes_transferred*/)
    {
        if (!error || error == boost::asio::error::message_size)
        {
            gen_random_string(message_array, 8192);
            boost::shared_ptr<std::string> message(new std::string(message_array));

            socket_.async_send_to(boost::asio::buffer(*message), remote_endpoint_,
                                  boost::bind(&udp_server::handle_send, this, message,
                                              boost::asio::placeholders::error,
                                              boost::asio::placeholders::bytes_transferred));

            start_receive();
        }
    }

    void handle_send(boost::shared_ptr<std::string> /*message*/,
                     const boost::system::error_code& /*error*/,
                     std::size_t /*bytes_transferred*/)
    {
    }

    boost::asio::ip::udp::udp::socket socket_;
    boost::asio::ip::udp::udp::endpoint remote_endpoint_;
    boost::array<char, 1> recv_buffer_;
};


void runUDPServer( CmdLineOpts input )
{
    try
    {
        boost::asio::io_service io_service;
        udp_server server(io_service,input.port);
        io_service.run();
    }
    catch (std::exception& e)
    {
        std::cerr << e.what() << std::endl;
    }

}



class udp_client
{
public:
    udp_client(
        boost::asio::io_service& io_service,
        const std::string& host,
        const std::string& port
    ) : io_service_(io_service), socket_(io_service, boost::asio::ip::udp::udp::endpoint(boost::asio::ip::udp::udp::v4(), 0)) {
        boost::asio::ip::udp::udp::resolver resolver(io_service_);
        boost::asio::ip::udp::udp::resolver::query query(boost::asio::ip::udp::udp::v4(), host, port);
        boost::asio::ip::udp::udp::resolver::iterator iter = resolver.resolve(query);
        endpoint_ = *iter;
    }

    ~udp_client()
    {
        std::cout << "Calling UDP client destructor" << std::endl;
        socket_.close();
    }

    void send() {
        socket_.send_to(boost::asio::buffer(send_buf), endpoint_);
    }

    void recieve_from() {
        /*Initialize our endpoint*/
        boost::array<unsigned char, 8192> temp; 
       // boost::asio::buffer boost_buf(temp);
        size_t len = socket_.receive_from(
                         boost::asio::buffer(temp), sender_endpoint);

        std::ostringstream ss;
        ss << std::hex << std::uppercase << std::setfill( '0' );
        std::for_each( temp.cbegin(), temp.cend(), [&]( int c ) { ss << std::setw( 2 ) << c; } );
        std::string result = ss.str();
        std::cout << "Length of recieved message " << len << std::endl;
        std::cout << result << std::endl;

    }

private:
    boost::asio::io_service& io_service_;
    boost::asio::ip::udp::udp::socket socket_;
    boost::asio::ip::udp::udp::endpoint endpoint_;
    //boost::array<char, 2048> recv_buf;
    std::vector<unsigned char> recv_buf;
    boost::array<char, 1> send_buf  = {{ 0 }};
    boost::asio::ip::udp::endpoint sender_endpoint;

};

void runUDPClient(std::string portStr)
{
    try
    {
        boost::asio::io_service io_service;
        udp_client client(io_service, "localhost", portStr);
        client.send();
        client.recieve_from();
    }
    catch (std::exception& e)
    {
        std::cerr << e.what() << std::endl;
    }
}

void runClient( CmdLineOpts input )
{
    runUDPClient(input.portStr);
}

void runServer( CmdLineOpts input )
{
    runUDPServer(input);
}

/**
* Usage: client_server <protocol> <port> <num of packets>
*/
bool clarg_parse ( int argc, char *argv[], CmdLineOpts *input )
{
    bool result = true;
    if (argc - 1 == ARG_COUNT)
    {
        // arg 1: server or client
        int arg1 = std::stoi(argv[1]);
        if (arg1 == 0 || arg1 == 1)
        {
            input->servOrClient = arg1;
        }
        else
        {
            std::cout << "Invalid client server choice.\nUsage: client_server <client (0) or server(1)> <port>" << std::endl;
            result = false;
        }
        // arg 2: port
        int arg2 = std::stoi(argv[3]);
        if (arg2 > LOWEST_PORT && arg2 < HIGHEST_PORT )
        {
            input->port = arg2;
            input->portStr = argv[3];
        }
        else
        {
            std::cout << "Invalid port, must be between " << LOWEST_PORT << " and " << HIGHEST_PORT << std::endl;
            std::cout << "Usage: client_server <client (0) or server(1)> <port>" << std::endl;
            result = false;
        }

    }
    else
    {
        std::cout << "Usage: client_server <client (0) or server(1)> <port>" << std::endl;
        result = false;
    }

    return result;
}



int main ( int argc, char *argv[] )
{
    CmdLineOpts input;
    if (clarg_parse(argc, argv, &input))
    {
        if(input.servOrClient == 1)
        {
            runServer(input);
        }
        else if(input.servOrClient == 0)
        {
            runClient(input);
        }
    }
    else
    {
        return 1;
    }

    return 0;
}

头文件udp_server.hpp

#ifndef UDP_SERVER_H_INCLUDED 
#define UDP_SERVER_H_INCLUDED

#include <string>

struct CmdLineOpts
{
    std::string portStr;
    int port;
    int servOrClient;
};

void runUDPServer ( CmdLineOpts input );

bool clarg_parse ( int argc, char *argv[], CmdLineOpts input );
#endif

Makefile编译上面的程序

TARGET = udp_server
LIBS = -lboost_system -lpthread
CXX = g++
CXXFLAGS = -std=c++11 -g -Wall -pedantic

.PHONY: default all clean

default: $(TARGET)
all: default

OBJECTS = $(patsubst %.cpp, %.o, $(wildcard *.cpp))
HEADERS = $(wildcard *.hpp)

%.o: %.cpp $(HEADERS)
    $(CXX) $(CXXFLAGS) -c $< -o $@

.PRECIOUS: $(TARGET) $(OBJECTS)

$(TARGET): $(OBJECTS)
    $(CXX) $(OBJECTS) $(LIBS) -o $@

clean:
        -rm -f *.o
        -rm -f $(TARGET)

我的问题如下。

1)设计是否适合发送网络数据包。我担心的是,当客户端向服务器发送一些数据时,似乎发送了数据包(即服务器响应)。换句话说,客户端需要定期轮询服务器以查询数据。是否有其他模型服务器通知客户端数据可用?这会是一个更好的设计吗?

2)在示例中,我为客户端和服务器分配了一个8192字节的数组。这需要吗?据我所知,UDP的MTU(以及TCP为1500字节)。是否有任何理由在客户端和服务器上分配超过1500字节的数组。?

如果有人能够回答上述问题,那真的很棒。

1 个答案:

答案 0 :(得分:1)

在为应用程序协议设计I / O层时,请考虑预期的网络拓扑,应用程序协议要求,任何服务级别协议,硬件要求等。围绕满足这些约束进行设计,而不是过多地投入精力优化效率低。在不了解更多细节的情况下,回答设计是好的还是其他设计更好是主观的。尽管如此:

  • 如果服务器响应客户端的定期请求符合应用程序协议的要求,那么它可能是一个很好的设计。
  • 如果需要减少通知客户端的延迟,那么当数据变得可用时让服务器发起发送可能是一个好的设计。请注意,由于NAT traversal,网络地形可能会影响此问题。

对于给定的层,maximum transmission unit(MTU)定义可以向前传递到下一层的协议单元的最大大小。更高级别的层和协议可能会引入碎片处理,允许给定层的协议单元的最大大小超过较低层的MTU。例如,虽然以太网的MTU为1500字节,但UDP 数据报(第4层:传输)有效负载的最大大小为65507字节。这是可能的,因为IP层数据包(第3层:网络)可以由一个或多个以太网(第2层:数据链路)构成。

应该使用的缓冲区大小通常取决于应用程序协议。例如,Asio Chat example使用516字节的缓冲区,因为应用程序协议的最大长度为516字节。低层协议单元的分段和重组将对应用程序透明。但是,由于UDP既不提供确认也不提供重传,并且丢失部分数据报将导致整个数据报被丢弃,较大的数据报由于更大的碎片而更有可能丢失。