我正在尝试复制这篇论文:Global motion estimation from coarsely sampled motion vector field and the applications
我需要找到参数m0, m1, m2....., m7
给定图像x1_1和x1_2以及方程式
其中x'{x1_2 [1,:,]]和y'{x1_2 [0,:,]]是x1_2的值, x,y x1_1是相同风格的x1_1。
我已经参考this post中的示例来实现此实现。
有人可以帮我找到这些参数吗?
leastsq
function进行编辑。import os
import sys
import numpy as np
import scipy
from scipy.optimize import leastsq
def peval (inp_mat,p):
m0,m1,m2,m3,m4,m5,m6,m7 = p
out_mat = np.zeros(inp_mat.shape,dtype=np.float32)
mid = inp_mat.shape[0]/2
for xy in range(0,inp_mat.shape[0]):
if (xy<(inp_mat.shape[0]/2)):
out_mat[xy] = ( ( (inp_mat[xy+mid]*m0)+(inp_mat[xy]*m1)+ m2 ) /( (inp_mat[xy+mid]*m6)+(inp_mat[xy]*m7)+1 ) )
else:
out_mat[xy] = ( ( (inp_mat[xy]*m3)+(inp_mat[xy-mid]*m4)+ m5 ) /( (inp_mat[xy]*m6)+(inp_mat[xy-mid]*m7)+1 ) )
return out_mat
def residuals(p, out_mat, inp_mat):
m0,m1,m2,m3,m4,m5,m6,m7 = p
err=np.zeros(inp_mat.shape,dtype=np.float32)
if (out_mat.shape == inp_mat.shape):
for xy in range(0,inp_mat.shape[0]):
err[xy] = err[xy]+ (out_mat[xy] -inp_mat[xy])
return err
f = open('/media/anilil/Data/Datasets/repo/txt_op/vid.txt','r')
x = np.loadtxt(f,dtype=np.int16,comments='#',delimiter='\t')
nof = x.shape[0]/72 # Find the number of frames
x1 = x.reshape(-1,60,40)
x1_1= x1[0,:,:].flatten()
x1_2= x1[1,:,:].flatten()
x= []
y= []
for xy in range(1,50,1):
y.append(x1[xy,:,:].flatten())
x.append(x1[xy-1,:,:].flatten())
x=np.array(x,dtype=np.float32)
y=np.array(y,dtype=np.float32)
length = x1_1.shape#initail guess
p0 = np.array([1,1,1,1,1,1,1,1],dtype=np.float32)
abc=leastsq(residuals, p0,args=(y,x))
print ('Size of first matrix is '+str(x1_1.shape))
print ('Size of first matrix is '+str(x1_2.shape))
print ("Done with program")
ValueError: object too deep for desired array
Traceback (most recent call last):
File "/media/anilil/Data/charm/mv_clean/.idea/nose_reduction_mpeg.py", line 49, in <module>
abc=leastsq(residuals, p0,args=(y,x))
File "/usr/lib/python2.7/dist-packages/scipy/optimize/minpack.py", line 378, in leastsq
gtol, maxfev, epsfcn, factor, diag)
minpack.error: Result from function call is not a proper array of floats.
答案 0 :(得分:0)
查看documentation of leastsq
和the example。
您需要定义目标函数,以便将所有参数作为第一个参数,然后是其他输入:
def function (M, inp_mat):
m0, m1, m2, m3, m4, m5, m6, m7 = M
out_mat = np.zeros(inp_mat.shape)
...
您的案例inp_mat
中的其他参数将作为args
传递给优化函数:
result = opt.leastsq(function, x0, args=(inp_mat), Dfun=None, full_output=0, col_deriv=0, ftol=1.49012e-08, xtol=1.49012e-08, gtol=0.0, maxfev=0, epsfcn=None, factor=100, diag=None)
我不知道inp_mat
应该是什么。很可能它与数据有关,所以args=(x1)
可能就是你想要的。
最后,您希望从优化中检索结果并使用它们执行某些操作。