使用float32和float64慢速分配Pandas DataFrame

时间:2016-02-03 18:20:46

标签: python numpy pandas floating-point

使用具有不同float32和float64数据类型的Pandas DataFrame进行的赋值对于某些组合来说相当缓慢。

下面的代码设置一个DataFrame,对部分数据进行Numpy / Scipy计算,通过复制旧DataFrame来设置一个新的DataFrame,并将计算结果分配给新的DataFrame:

import pandas as pd
import numpy as np
from scipy.signal import lfilter

N = 1000
M = 1000

def f(dtype1, dtype2):
    coi = [str(m) for m in range(M)]
    df = pd.DataFrame([[m for m in range(M)] + ['Hello', 'World'] for n in range(N)],
                      columns=coi + ['A', 'B'], dtype=dtype1)
    Y = lfilter([1], [0.5, 0.5], df.ix[:, coi])
    Y = Y.astype(dtype2)
    new = pd.DataFrame(df, copy=True)
    print(new.iloc[0, 0].dtype)
    print(Y.dtype)
    new.ix[:, coi] = Y    # This statement is considerably slow
    print(new.iloc[0, 0].dtype)


from time import time

dtypes = [np.float32, np.float64]
for dtype1 in dtypes:
    for dtype2 in dtypes:
        print('-' * 10)
        start_time = time()
        f(dtype1, dtype2)
        print(time() - start_time)

时间结果是:

----------
float32
float32
float64
10.1998147964
----------
float32
float64
float64
10.2371120453
----------
float64
float32
float64
0.864870071411
----------
float64
float64
float64
0.866265058517

这里的关键线是new.ix[:, coi] = Y:对于某些组合来说,这是十倍慢。

我可以理解,当存在float32 DataFrame并且为其分配了float64时,需要一些重新分配的开销。但为什么开销如此戏剧化。

此外,float32和float32赋值的组合也很慢,结果是float64,这也困扰我。

1 个答案:

答案 0 :(得分:0)

单列赋值不会改变类型,并且对于非类型转换赋值而言,使用for-loop over columns进行迭代似乎相当快, - float32和float64。对于涉及类型转换的赋值,性能通常是多列分配的最差性能的两倍

import pandas as pd
import numpy as np
from scipy.signal import lfilter

N = 1000
M = 1000

def f(dtype1, dtype2):
    coi = [str(m) for m in range(M)]
    df = pd.DataFrame([[m for m in range(M)] + ['Hello', 'World'] for n in range(N)],
                      columns=coi + ['A', 'B'], dtype=dtype1)
    Y = lfilter([1], [0.5, 0.5], df.ix[:, coi])
    Y = Y.astype(dtype2)
    new = df.copy()
    print(new.iloc[0, 0].dtype)
    print(Y.dtype)
    for n, column in enumerate(coi):  # For-loop over columns new!
        new.ix[:, column] = Y[:, n]
    print(new.iloc[0, 0].dtype)

from time import time

dtypes = [np.float32, np.float64]
for dtype1 in dtypes:
    for dtype2 in dtypes:
        print('-' * 10)
        start_time = time()
        f(dtype1, dtype2)
        print(time() - start_time)

结果是:

----------
float32
float32
float32
0.809890985489
----------
float32
float64
float64
21.4767119884
----------
float64
float32
float32
20.5611870289
----------
float64
float64
float64
0.765362977982