我试图用计算域四边的Dirichlet边界条件求解Poison方程。众所周知,我应该使用FFTW_RODFT00来满足条件。但是,结果不正确。你能帮帮我吗?
#include <stdio.h>
#include <math.h>
#include <cmath>
#include <fftw3.h>
#include <iostream>
#include <vector>
using namespace std;
int main() {
int N1=100;
int N2=100;
double pi = 3.141592653589793;
double L1 = 2.0;
double dx = L1/(double)(N1-1);
double L2= 2.0;
double dy=L2/(double)(N2-1);
double invL1s=1.0/(L1*L1);
double invL2s=1.0/(L2*L2);
std::vector<double> in1(N1*N2,0.0);
std::vector<double> in2(N1*N2,0.0);
std::vector<double> out1(N1*N2,0.0);
std::vector<double> out2(N1*N2,0.0);
std::vector<double> X(N1,0.0);
std::vector<double> Y(N2,0.0);
fftw_plan p, q;
int i,j;
p = fftw_plan_r2r_2d(N1,N2, in1.data(), out1.data(), FFTW_RODFT00, FFTW_RODFT00, FFTW_EXHAUSTIVE);
q = fftw_plan_r2r_2d(N1,N2, in2.data(), out2.data(), FFTW_RODFT00, FFTW_RODFT00, FFTW_EXHAUSTIVE);
int l=-1;
for(i = 0;i <N1;i++){
X[i] =-1.0+(double)i*dx ;
for(j = 0;j<N2;j++){
l=l+1;
Y[j] =-1.0+ (double)j*dy ;
in1[l]= sin(pi*X[i]) + sin(pi*Y[j]) ; // row major ordering
}
}
fftw_execute(p);
l=-1;
for ( i = 0; i < N1; i++){ // f = g / ( kx² + ky² )
for( j = 0; j < N2; j++){
l=l+1;
double fact=0;
in2[l]=0;
if(2*i<N1){
fact=((double)i*i)*invL1s;;
}else{
fact=((double)(N1-i)*(N1-i))*invL1s;
}
if(2*j<N2){
fact+=((double)j*j)*invL2s;
}else{
fact+=((double)(N2-j)*(N2-j))*invL2s;
}
if(fact!=0){
in2[l] = out1[l]/fact;
}else{
in2[l] = 0.0;
}
}
}
fftw_execute(q);
l=-1;
double erl1 = 0.;
for ( i = 0; i < N1; i++) {
for( j = 0; j < N2; j++){
l=l+1;
erl1 +=1.0/pi/pi*fabs( in1[l]- 0.25*out2[l]/((double)(N1-1))/((double)(N2-1)));
printf("%3d %10.5f %10.5f\n", l, in1[l], 0.25*out2[l]/((double)(N1-1))/((double)(N2-1)));
}
}
cout<<"error=" <<erl1 <<endl ;
fftw_destroy_plan(p); fftw_destroy_plan(q); fftw_cleanup();
return 0;
}
答案 0 :(得分:1)
我认识到我在Poisson equation using FFTW with rectanguar domain中提供的一个技巧以及我在Confusion testing fftw3 - poisson equation 2d test的答案中提供的代码,该代码改编自提问者@Charles_P的代码!请在以后的问题中考虑添加这些网址的链接!
Confusion testing fftw3 - poisson equation 2d test的答案专门用于周期性边界条件的情况。所以这里有一些修改来解决Dirichlet边界条件的情况。
fftw_plan_r2r_2d(N1,N2, in1.data(), out1.data(), FFTW_RODFT00, FFTW_RODFT00,FFTW_EXHAUSTIVE)
对应于I型离散正弦变换as defined by the FFTW library:
它的含义在https://en.wikipedia.org/wiki/Discrete_sine_transform中有详细描述。如果FFTW数组的大小为N1=4
及其值[a,b,c,d],则包含边界的完整数组为[0,a,b,c,d,0]。因此,空间步骤是:
I DST类型的频率f_k
为:
类型I DST的反转是I DST类型,除了比例因子(参见http://www.fftw.org/doc/1d-Real_002dodd-DFTs-_0028DSTs_0029.html#g_t1d-Real_002dodd-DFTs-_0028DSTs_0029),此处为4.(N1+1).(N2+1)
。
最后,测试用例必须适应Dirichlet边界条件的情况。实际上,在大小L1,L2
的方框中,函数不尊重Diriclet边界条件。实际上,即使源项是相同的,满足周期性边界条件的解也可以与满足Dirichelt边界条件的解决方案不同。相反,可以测试两个源术语:
源术语对应于DST的单个频率。
源词直接来自解决方案
最后,这是一个使用FFTW库的I型DST解决2D泊松方程的代码:
#include <stdio.h>
#include <math.h>
#include <cmath>
#include <fftw3.h>
#include <iostream>
#include <vector>
using namespace std;
int main() {
int N1=100;
int N2=200;
double pi = 3.141592653589793;
double L1 = 1.0;
double dx = L1/(double)(N1+1);//+ instead of -1
double L2= 5.0;
double dy=L2/(double)(N2+1);
double invL1s=1.0/(L1*L1);
double invL2s=1.0/(L2*L2);
std::vector<double> in1(N1*N2,0.0);
std::vector<double> in2(N1*N2,0.0);
std::vector<double> out1(N1*N2,0.0);
std::vector<double> out2(N1*N2,0.0);
std::vector<double> X(N1,0.0);
std::vector<double> Y(N2,0.0);
fftw_plan p, q;
int i,j;
p = fftw_plan_r2r_2d(N1,N2, in1.data(), out1.data(), FFTW_RODFT00, FFTW_RODFT00, FFTW_EXHAUSTIVE);
q = fftw_plan_r2r_2d(N1,N2, in2.data(), out2.data(), FFTW_RODFT00, FFTW_RODFT00, FFTW_EXHAUSTIVE);
int l=0;
for(i = 0;i <N1;i++){
for(j = 0;j<N2;j++){
X[i] =dx+(double)i*dx ;
Y[j] =dy+ (double)j*dy ;
//in1[l]= sin(pi*X[i])*sin(pi*Y[j]) ; // row major ordering
in1[l]=2*Y[j]*(L2-Y[j])+2*X[i]*(L1-X[i]);
l=l+1;
}
}
fftw_execute(p);
l=-1;
for ( i = 0; i < N1; i++){ // f = g / ( kx² + ky² )
for( j = 0; j < N2; j++){
l=l+1;
double fact=0;
fact=pi*pi*((double)(i+1)*(i+1))*invL1s;
fact+=pi*pi*((double)(j+1)*(j+1))*invL2s;
in2[l] = out1[l]/fact;
}
}
fftw_execute(q);
l=-1;
double erl1 = 0.;
for ( i = 0; i < N1; i++) {
for( j = 0; j < N2; j++){
l=l+1;
X[i] =dx+(double)i*dx ;
Y[j] =dy+ (double)j*dy ;
//double res=0.5/pi/pi*in1[l];
double res=X[i]*(L1-X[i])*Y[j]*(L2-Y[j]);
erl1 +=pow(fabs(res- 0.25*out2[l]/((double)(N1+1))/((double)(N2+1))),2);
printf("%3d %10.5g %10.5g\n", l, res, 0.25*out2[l]/((double)(N1+1))/((double)(N2+1)));
}
}
erl1=erl1/((double)N1*N2);
cout<<"error=" <<sqrt(erl1) <<endl ;
fftw_destroy_plan(p); fftw_destroy_plan(q); fftw_cleanup();
return 0;
}
由g++ main.cpp -o main -lfftw3 -Wall
编译。
编辑: 如何计算每个频率的响应?
基于FFT的思想是将解决方案表示为函数的线性组合:
在Dirichlet边界条件的情况下,使用I型DST。基本函数(x=0
和x=L1
为0)为:
在Neumann边界条件的情况下,使用I型DCT。基本功能是:
他们的衍生工具在x=0
和x=L1
处无效。
让我们计算I型DST的组件f_k
的二阶导数:
因此,解决方案的DST的组件k
对应于源项的DST的组件k
,按因子缩放