我有过去2年的每日数据。我有月度季节性。所以我想包含11个虚拟变量。
google.maps.event.addListener(map, 'click', function (event) {
document.getElementById("lat").value = event.latLng.lat();
document.getElementById("long").value = event.latLng.lng();
marker.setPosition(lat, lng);
marker.setMap(map);
});
当我尝试运行命令时
dat<-read.csv("data.csv")
val.ts <- ts(dat$Actual,start=c(2014,1,1),freq=12)
我收到错误消息
mymod <- ucm(val.ts~dat[,2:12],cycle = TRUE,cycle.period = 12)
答案 0 :(得分:2)
查看以下内容是否适合您。
library(rucm)
dat <- read.csv("data.csv")
fo <- as.formula(paste("Actual ~ ", paste(names(dat)[2:13], collapse= "+")))
mymod <- ucm(fo, data = dat, cycle = TRUE, cycle.period = 12)
这是一个虚拟数据的测试:
set.seed(123)
dat <- as.data.frame(cbind(Nile, matrix(rnorm(1200), 100, 12)))
colnames(dat) <- c("Actual", paste0("V", 1:12))
fo <- as.formula(paste("Actual ~ ", paste(names(dat)[2:13], collapse= "+")))
mymod <- ucm(fo, data = dat, cycle = TRUE, cycle.period = 12)
mymod
# Call:
# ucm(formula = fo, data = dat, cycle = TRUE, cycle.period = 12)
# Parameter estimates:
# Estimate Approx.StdErr t.val p.value
# V1 -8.1606 15.4735 -0.5274 0.59925
# V2 4.6288 14.1291 0.3276 0.74399
# V3 7.7008 14.7144 0.5234 0.60205
# V4 -15.8045 14.0253 -1.1269 0.26287
# V5 -11.5938 14.4435 -0.8027 0.42431
# V6 -22.4537 14.9448 -1.5024 0.13656
# V7 -2.6873 13.2951 -0.2021 0.84028
# V8 -26.5699 14.1251 -1.8810 0.06327 .
# V9 12.5518 12.9471 0.9695 0.33497
# V10 13.3437 13.8729 0.9619 0.33876
# V11 -12.0410 13.2171 -0.9110 0.36477
# V12 2.8637 13.8277 0.2071 0.83641
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
# Estimated variance:
# Irregular_Variance Level_Variance Cycle_Variance
# 14722.8809 545.6452 7.0148