我正在尝试但在合并nan
的两列时无法移除DataFrame
。
数据如下:
feedback_id _id
568a8c25cac4991645c287ac nan
568df45b177e30c6487d3603 nan
nan 568df434832b090048f34974
nan 568cd22e9e82dfc166d7dff1
568df3f0832b090048f34711 nan
nan 568e5a38b4a797c664143dda
我想:
feedback_request_id
568a8c25cac4991645c287ac
568df45b177e30c6487d3603
568df434832b090048f34974
568cd22e9e82dfc166d7dff1
568df3f0832b090048f34711
568e5a38b4a797c664143dda
这是我的代码:
df3['feedback_request_id'] = ('' if df3['_id'].empty else df3['_id'].map(str)) + ('' if df3['feedback_id'].empty else df3['feedback_id'].map(str))
我得到的输出:
feedback_request_id
568a8c25cac4991645c287acnan
568df45b177e30c6487d3603nan
nan568df434832b090048f34974
nan568cd22e9e82dfc166d7dff1
568df3f0832b090048f34711nan
nan568e5a38b4a797c664143dda
我试过这个,也是:
df3['feedback_request_id'] = ('' if df3['_id']=='nan' else df3['_id'].map(str)) + ('' if df3['feedback_id']=='nan' else df3['feedback_id'].map(str))
但是它给出了错误:
ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
答案 0 :(得分:32)
您可以使用combine_first
或fillna
:
print df['feedback_id'].combine_first(df['_id'])
0 568a8c25cac4991645c287ac
1 568df45b177e30c6487d3603
2 568df434832b090048f34974
3 568cd22e9e82dfc166d7dff1
4 568df3f0832b090048f34711
5 568e5a38b4a797c664143dda
Name: feedback_id, dtype: object
print df['feedback_id'].fillna(df['_id'])
0 568a8c25cac4991645c287ac
1 568df45b177e30c6487d3603
2 568df434832b090048f34974
3 568cd22e9e82dfc166d7dff1
4 568df3f0832b090048f34711
5 568e5a38b4a797c664143dda
Name: feedback_id, dtype: object
答案 1 :(得分:2)
如果您想要一个不需要明确引用df
两次或任何列的解决方案:
df.bfill(axis=1).iloc[:, 0]
使用两列,这会将右列中的非空值复制到左侧,然后选择左列。
答案 2 :(得分:0)
对于就地解决方案,您可以将pd.Series.update
与pd.DataFrame.pop
结合使用:
df['feedback_id'].update(df.pop('_id'))
print(df)
feedback_id
0 568a8c25cac4991645c287ac
1 568df45b177e30c6487d3603
2 568df434832b090048f34974
3 568cd22e9e82dfc166d7dff1
4 568df3f0832b090048f34711
5 568e5a38b4a797c664143dda