使用平均值

时间:2016-01-24 04:40:25

标签: python pandas dataframe mean missing-data

datetime
2012-01-01    125.5010
2012-01-02    NaN
2012-01-03    125.5010
2013-01-04    NaN
2013-01-05    125.5010
2013-02-28    125.5010
2014-02-28    125.5010
2016-01-02    125.5010
2016-01-04    125.5010
2016-02-28    NaN

我想通过使用从数据集计算的气候学来填充此数据框中的missig值,即通过平均来自其他年份的28th feb 2016值来填充缺失的28th feb值。我该怎么做?

1 个答案:

答案 0 :(得分:1)

您可以使用month dayprint df.groupby([df.index.month, df.index.day]).transform(lambda x: x.fillna(x.mean())) datetime 2012-01-01 125.501 2012-01-02 125.501 2012-01-03 125.501 2013-01-04 125.501 2013-01-05 125.501 2013-02-28 125.501 2014-02-28 125.501 2016-01-02 125.501 2016-01-04 125.501 2016-02-28 125.501 以及groupby transform fillna使用mean

{{1}}