计算两个点阵列之间成对角度的矩阵

时间:2016-01-12 07:46:16

标签: python arrays numpy scipy distance

我有两个点向量,xy,分别为(n, p)(m, p)。举个例子:

x = np.array([[ 0.     , -0.16341,  0.98656],
              [-0.05937, -0.25205,  0.96589],
              [ 0.05937, -0.25205,  0.96589],
              [-0.11608, -0.33488,  0.93508],
              [ 0.     , -0.33416,  0.94252]])
y = np.array([[ 0.     , -0.36836,  0.92968],
              [-0.12103, -0.54558,  0.82928],
              [ 0.12103, -0.54558,  0.82928]])

我想计算一个(n, m)大小的矩阵,其中包含两个点之间的角度,即this个问题。也就是说,矢量化版本:

theta = np.array(
            [ np.arccos(np.dot(i, j) / (la.norm(i) * la.norm(j)))
                 for i in x for j in y ]
        ).reshape((n, m))

注意:nm各可为~10000。

1 个答案:

答案 0 :(得分:3)

有多种方法可以做到这一点:

import numpy.linalg as la
from scipy.spatial import distance as dist

# Manually
def method0(x, y):
    dotprod_mat = np.dot(x,  y.T)
    costheta = dotprod_mat / la.norm(x, axis=1)[:, np.newaxis]
    costheta /= la.norm(y, axis=1)
    return np.arccos(costheta)

# Using einsum
def method1(x, y):
    dotprod_mat = np.einsum('ij,kj->ik', x, y)
    costheta = dotprod_mat / la.norm(x, axis=1)[:, np.newaxis]
    costheta /= la.norm(y, axis=1)
    return np.arccos(costheta)

# Using scipy.spatial.cdist (one-liner)
def method2(x, y):
    costheta = 1 - dist.cdist(x, y, 'cosine')
    return np.arccos(costheta)

# Realize that your arrays `x` and `y` are already normalized, meaning you can
# optimize method1 even more
def method3(x, y):
    costheta = np.einsum('ij,kj->ik', x, y) # Directly gives costheta, since
                                            # ||x|| = ||y|| = 1
    return np.arccos(costheta)

(n,m)=(1212,252)的定时结果:

>>> %timeit theta = method0(x, y)
100 loops, best of 3: 11.1 ms per loop
>>> %timeit theta = method1(x, y)
100 loops, best of 3: 10.8 ms per loop
>>> %timeit theta = method2(x, y)
100 loops, best of 3: 12.3 ms per loop
>>> %timeit theta = method3(x, y)
100 loops, best of 3: 9.42 ms per loop

随着元素数量的增加,时序差异减小。对于(n,m)=(6252,1212):

>>> %timeit -n10 theta = method0(x, y)
10 loops, best of 3: 365 ms per loop
>>> %timeit -n10 theta = method1(x, y)
10 loops, best of 3: 358 ms per loop
>>> %timeit -n10 theta = method2(x, y)
10 loops, best of 3: 384 ms per loop
>>> %timeit -n10 theta = method3(x, y)
10 loops, best of 3: 314 ms per loop

但是,如果您省略np.arccos步骤,即假设您只能使用costheta进行管理,并且 theta本身,然后:

>>> %timeit costheta = np.einsum('ij,kj->ik', x, y)
10 loops, best of 3: 61.3 ms per loop
>>> %timeit costheta = 1 - dist.cdist(x, y, 'cosine')
10 loops, best of 3: 124 ms per loop
>>> %timeit costheta = dist.cdist(x, y, 'cosine')
10 loops, best of 3: 112 ms per loop

这是针对(6252,1212)的情况。实际上np.arccos实际占据了80%的时间。在这种情况下,我发现np.einsum dist.cdist更快。所以你肯定想要使用einsum

摘要theta的结果大致相似,但np.einsum对我来说速度最快,特别是当您没有无关地计算规范时。尽量避免计算theta并仅使用costheta

注意:我没有提到的一个重点是浮点精度的有限性会导致np.arccos给出nan值。 method[0:3]工作的xy的值自然没有得到正确的规范化。但method3提供了一些nan。我使用预归一化来修复它,这自然会破坏使用method3的任何增益,除非你需要对一小组预标准化矩阵进行多次计算(无论出于何种原因)。