我的目标是提取食品的营养信息。该图像来自手机摄像头,并被裁剪为营养事实表。
我已经进行了一些预处理以获得像这样的增强图像
我按照步骤从链接中提取文本 https://github.com/Itseez/opencv_contrib/blob/master/modules/text/samples/end_to_end_recognition.cpp
我得到了分解图像的结果
最后是检测到的文字
终端输出
代码:
#include <iostream>
#include "opencv2/text.hpp"
#include <opencv2/opencv.hpp>
#include <tesseract/baseapi.h>
#include <tesseract/strngs.h>
using namespace std;
using namespace cv;
using namespace cv::text;
bool isRepetitive(const string& s){
int count = 0;
for (int i=0; i<(int)s.size(); i++){
if ((s[i] == 'i') ||
(s[i] == 'l') ||
(s[i] == 'I'))
count++;
}
if (count > ((int)s.size()+1)/2){
return true;
}
return false;
}
void er_draw(vector<Mat> &channels, vector<vector<ERStat> > ®ions, vector<Vec2i> group, Mat& segmentation){
for (int r=0; r<(int)group.size(); r++){
ERStat er = regions[group[r][0]][group[r][1]];
if (er.parent != NULL) { // deprecate the root region
int newMaskVal = 255;
int flags = 4 + (newMaskVal << 8) + FLOODFILL_FIXED_RANGE + FLOODFILL_MASK_ONLY;
floodFill(channels[group[r][0]],segmentation,Point(er.pixel%channels[group[r][0]].cols,er.pixel/channels[group[r][0]].cols),
Scalar(255),0,Scalar(er.level),Scalar(0),flags);
}
}
}
std::vector<Mat> extractTableFromImage(Mat src){
// resizing for practical reasons
Mat rsz;
Size size(800, 900);
resize(src, rsz, size);
// Transform source image to gray if it is not and show grayscale image
Mat gray;
if (rsz.channels() == 3){
cvtColor(rsz, gray, CV_BGR2GRAY);
} else {
gray = rsz;
}
// Apply adaptiveThreshold at the bitwise_not of gray, notice the ~ symbol
Mat bw;
adaptiveThreshold(~gray, bw, 255, CV_ADAPTIVE_THRESH_MEAN_C, THRESH_BINARY, 15, -2);
// Create the images that will use to extract the horizontal and vertical lines
Mat horizontal = bw.clone();
Mat vertical = bw.clone();
int scale = 20; // change this variable in order to increase/decrease the amount of lines to be detected
// Specify size on horizontal axis
int horizontalsize = horizontal.cols / scale;
// Create structure element for extracting horizontal lines through morphology operations
Mat horizontalStructure = getStructuringElement(MORPH_RECT, Size(horizontalsize,1));
// Apply morphology operations, erosion removes white noises, but it also shrinks our object
//So we dilate it, since noise is gone, they won't come back, but our object area increases
erode(horizontal, horizontal, horizontalStructure, Point(-1, -1));
dilate(horizontal, horizontal, horizontalStructure, Point(-1, -1));
// Specify size on vertical axis
int verticalsize = vertical.rows / scale;
// Create structure element for extracting vertical lines through morphology operations
Mat verticalStructure = getStructuringElement(MORPH_RECT, Size( 1,verticalsize));
// Apply morphology operations
erode(vertical, vertical, verticalStructure, Point(-1, -1));
dilate(vertical, vertical, verticalStructure, Point(-1, -1));
// create a mask which includes the tables
Mat mask = horizontal + vertical;
// find the joints between the lines of the tables, we will use this information in order
// to descriminate tables from pictures
Mat joints;
bitwise_and(horizontal, vertical, joints);
// Find external contours from the mask, which most probably will belong to tables or to images
vector<Vec4i> hierarchy;
std::vector<std::vector<cv::Point> > contours;
cv::findContours(mask, contours, hierarchy, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE, Point(0, 0));
vector<vector<Point> > contours_poly( contours.size() );
vector<Rect> boundRect( contours.size() );
vector<Mat> rois;
for (size_t i = 0; i < contours.size(); i++){
// find the area of each contour
double area = contourArea(contours[i]);
// filter individual lines of blobs that might exist and they do not represent a table
if(area < 100) // value is randomly chosen, you will need to find that by yourself with trial and error procedure
continue;
approxPolyDP( Mat(contours[i]), contours_poly[i], 3, true );
boundRect[i] = boundingRect( Mat(contours_poly[i]) );
// find the number of joints that each table has
Mat roi = joints(boundRect[i]);
vector<vector<Point> > joints_contours;
findContours(roi, joints_contours, RETR_CCOMP, CHAIN_APPROX_SIMPLE);
// if the number is not more than 5 then most likely it not a table
if(joints_contours.size() <= 4)
continue;
rois.push_back(rsz(boundRect[i]).clone());
//drawContours( rsz, contours, i, Scalar(0, 0, 255), CV_FILLED, 8, vector<Vec4i>(), 0, Point() );
rectangle( rsz, boundRect[i].tl(), boundRect[i].br(), Scalar(0, 255, 0), 1, 8, 0 );
}
return rois;
}
//Label pre processing
Mat labelPreprocessing(Mat image){
Mat grey;
cvtColor(image, grey, CV_BGR2GRAY);
cv::threshold(grey, grey, 128, 255, CV_THRESH_BINARY | CV_THRESH_OTSU);
// Apply Histogram Equalization
equalizeHist( grey, grey );
cv::imshow("enhanced label image", grey);
return grey;
}
void endToEndSceneTextDetectionAndRecognition(Mat image){
/*Text Detection*/
Mat grey;
grey = labelPreprocessing(image);
// Extract channels to be processed individually
vector<Mat> channels,channels2;
if (grey.channels() == 3){
cvtColor(grey, grey, CV_BGR2GRAY);
}
// Notice here we are only using grey channel
channels.push_back(grey);
channels.push_back(255-grey);
double t_d = (double)getTickCount();
// Create ERFilter objects with the 1st and 2nd stage default classifiers
Ptr<ERFilter> er_filter1 = createERFilterNM1(loadClassifierNM1("trained_classifierNM1.xml"),8,0.00005f,0.23f,0.2f,true,0.1f);
Ptr<ERFilter> er_filter2 = createERFilterNM2(loadClassifierNM2("trained_classifierNM2.xml"),0.5);
vector<vector<ERStat> > regions(channels.size());
// Apply the default cascade classifier to each independent channel (could be done in parallel)
for (int c=0; c<(int)channels.size(); c++)
{
er_filter1->run(channels[c], regions[c]);
er_filter2->run(channels[c], regions[c]);
}
cout << "TIME_REGION_DETECTION = " << ((double)getTickCount() - t_d)*1000/getTickFrequency() << endl;
Mat out_img_decomposition= Mat::zeros(image.rows+2, image.cols+2, CV_8UC1);
vector<Vec2i> tmp_group;
for (int i=0; i<(int)regions.size(); i++)
{
for (int j=0; j<(int)regions[i].size();j++)
{
tmp_group.push_back(Vec2i(i,j));
}
Mat tmp= Mat::zeros(image.rows+2, image.cols+2, CV_8UC1);
er_draw(channels, regions, tmp_group, tmp);
if (i > 0)
tmp = tmp / 2;
out_img_decomposition = out_img_decomposition | tmp;
tmp_group.clear();
}
imshow( "out_img_decomposition", out_img_decomposition);
double t_g = (double)getTickCount();
// Detect character groups
vector< vector<Vec2i> > nm_region_groups;
vector<Rect> nm_boxes;
erGrouping(image, channels, regions, nm_region_groups, nm_boxes,ERGROUPING_ORIENTATION_HORIZ);
cout << "TIME_GROUPING = " << ((double)getTickCount() - t_g)*1000/getTickFrequency() << endl;
/*Text Recognition (OCR)*/
double t_r = (double)getTickCount();
Ptr<OCRTesseract> ocr = OCRTesseract::create(NULL,NULL,"0123456789",tesseract::OEM_CUBE_ONLY,tesseract::PSM_AUTO);
cout << "TIME_OCR_INITIALIZATION = " << ((double)getTickCount() - t_r)*1000/getTickFrequency() << endl;
string output;
Mat out_img;
Mat out_img_detection;
Mat out_img_segmentation = Mat::zeros(image.rows+2, image.cols+2, CV_8UC1);
image.copyTo(out_img);
image.copyTo(out_img_detection);
float scale_img = 600.f/image.rows;
float scale_font = (float)(2-scale_img)/1.4f;
vector<string> words_detection;
t_r = (double)getTickCount();
for (int i=0; i<(int)nm_boxes.size(); i++){
rectangle(out_img_detection, nm_boxes[i].tl(), nm_boxes[i].br(), Scalar(0,255,255), 3);
imshow( "out_img_detection", out_img_detection);
Mat group_img = Mat::zeros(image.rows+2, image.cols+2, CV_8UC1);
er_draw(channels, regions, nm_region_groups[i], group_img);
Mat group_segmentation;
group_img.copyTo(group_segmentation);
//image(nm_boxes[i]).copyTo(group_img);
group_img(nm_boxes[i]).copyTo(group_img);
copyMakeBorder(group_img,group_img,15,15,15,15,BORDER_CONSTANT,Scalar(0));
vector<Rect> boxes;
vector<string> words;
vector<float> confidences;
ocr->run(group_img, output, &boxes, &words, &confidences, OCR_LEVEL_TEXTLINE);
output.erase(remove(output.begin(), output.end(), '\n'), output.end());
cout << "OCR output = \"" << output << endl;
}
}
int main(int argc, const char * argv[]){
// Load source image
Mat src = imread(argv[1]);
// Check if image is loaded fine
if(!src.data)
cerr << "Problem loading image!!!" << endl;
vector<Mat> rois = extractTableFromImage(src);
for(size_t i = 0; i < rois.size(); ++i){
imshow("roi", rois[i]);
endToEndSceneTextDetectionAndRecognition(rois[i]);
waitKey();
}
waitKey();
return 0;
}
我需要检测所有营养素名称及其值。如果有人能帮助我提取信息作为一条线,我将不胜感激 我,我需要输出
OCR输出=“碳水化合物70g”
OCR输出=“糖24.5g”