奇怪的结果是用神经网络逼近函数

时间:2016-01-07 12:51:51

标签: matlab neural-network function-approximation

我试图用RBF近似形式ddx = F(x,dx,u)(其中x,dx,u是标量,u是常数)的函数(微分方程的右边)神经网络。我将函数F作为一个黑盒子(我可以用初始x,dx和u来提供它,并且需要x和dx我想要的时间跨度)并且在训练期间(使用sigma修改)我得到以下响应绘制真实dx与近似的dx。response during training

相对应

然后我保存NN的参数(高斯的中心和stds,以及最终的权重)并使用与之前相同的初始x,dx和u进行模拟,当然保持权重稳定这次。但我得到以下情节。simulation response

这是合乎逻辑的吗?我错过了什么吗?

培训代码如下:

%load the results I got from the real function
load sim_data t p pd dp %p is x,dp is dx and pd is u
real_states = [p,dp];

%down and upper limits of the variables
p_dl = 0;
p_ul = 2;
v_dl = -1;
v_ul = 4;
pd_dl = 0;%pd is constant each time,but the function should work for different pds
pd_ul = 2;

%number of gaussians
nc = 15;

x = p_dl:(p_ul-p_dl)/(nc-1):p_ul;

dx = v_dl:(v_ul-v_dl)/(nc-1):v_ul;

pdx = pd_dl:(pd_ul-pd_dl)/(nc-1):pd_ul;

%centers of gaussians
Cx = combvec(x,dx,pdx);

%stds of the gaussians
B = ones(1,3)./[2.5*(p_ul-p_dl)/(nc-1),2.5*(v_ul-v_dl)/(nc-1),2.5*(pd_ul-pd_dl)/(nc-1)];


nw = size(Cx,2);
wdx = zeros(nw,1);

state = real_states(1,[1,4]);%there are also y,dy,dz and z in real_states (ignored here)
states = zeros(length(t),2);
timestep = 0.005;

for step=1:length(t)
    states(step,:) = state;
    %compute the values of the sigmoids
    Sx = exp(-1/2 * sum(((([real_states(step,1);real_states(step,4);pd(1)]*ones(1,nw))'-Cx').*(ones(nw,1)*B)).^2,2));

    ddx = -530*state(2) + wdx'*Sx;
    edx = state(2) - real_states(step,4);
    dwdx = -1200*edx * Sx - 4 * wdx;
    wdx = wdx + dwdx*timestep;

    state = [state(1)+state(2)*timestep,state(2)+ddx*timestep];
end

save weights wdx Cx B

figure
plot(t,[dp(:,1),states(:,2)])
legend('x_d_o_t','x_d_o_t_h_a_t')

用于验证近似值的代码如下:

load sim_data t p pd dp
real_states = [p,dp];

load weights wdx Cx B
nw = size(Cx,2);
state = real_states(1,[1,4]);
states = zeros(length(t),2);
timestep = 0.005;

for step=1:length(t)
    states(step,:) = state;
    Sx = exp(-1/2 * sum(((([real_states(step,1);real_states(step,4);pd(1)]*ones(1,nw))'-Cx').*(ones(nw,1)*B)).^2,2));
    ddx = -530*state(2) + wdx'*Sx;
    state = [state(1)+state(2)*timestep,state(2)+ddx*timestep];
end

figure
plot(t,[dp(:,1),states(:,2)])
legend('x_d_o_t','x_d_o_t_h_a_t')

0 个答案:

没有答案