我正在尝试使用Prim的Min Spanning Tree算法优化图形。但我没有得到理想的回答。
算法:
1. Construct min heap array. The array consists of nodes which have a vertex value
and a key value. The key values are initialized to INT_MAX initially.
2. Make the zeroth node's key 0, as this is the starting node.
3. I iterate over the heap, till it becomes empty, and in every step following is done:
- Extract the minimum element out of the min heap. This is done by extractMin()
function in the class MinHeap.
4. Look for this extracted element's neighbors and update their keys based on the weight of
the corresponding edge.
5. Then decrease the key value in the minHeap by using decreaseKey() function in
class MinHeap.
6. Store the parent and child for which the condition satisfies in a map called parent.
这是代码说明:
1. The code contains two header files, Graph.h and MinHeap.h. The functions are all std f
functions in these files. So there won't be any problem in understanding them.
2. The Graph.cpp file contains the PrimMST() function which does all the job and performs
the entire algorithm.
问题在于:
1. When I extract a node from heap in PrimMST() function, I call extractMin() function
defined in MinHeap.cpp file. This function swaps the top most node in the heap with the
bottom most node. And then performs the heapify operation.
But, it is not performing this operation though I have called it in extractMin(). There's
no problem with minHeapify function which does the heapify operation as it does
perform its job else where is the program.
这是该计划: P.S。:我发布了包含所有头文件的整个代码,因此可以很容易地理解它。但是跳过代码并请观察Graph.cpp文件中的PrimMST()函数。
/***************GRAPH.H*******************************/
#ifndef GRAPH_H_
#define GRAPH_H_
#include <list>
#include <map>
using namespace std;
class AdjListNode{
int v;
int weight;
public:
AdjListNode(int _v, int _w){ v = _v; weight = _w; }
int getV() { return v; }
int getWeight() { return weight; }
};
class Graph{
int V; // To store number of vertices in the graph
list<AdjListNode> *adj; // This is a map for storing the adjacency list
map<int,int> mapping; // A map to form a dictionary of vertex values to their array indexes for look ups.
map<int,int> parent; // A map to store the parent child for a given edge in the graph
public:
Graph(int); // Class constructor
void HashTable(int *, int); // This method uses the map library in STL to create a mappinh
// of arbitrary integers to zero based array indexes
int getHashedElt(int); // This method returns the value corresponding to a given
// key in a hash table
void addEdge(int, int, int); // This method adds the second arg to the adj list of first arg.
void printGraph(); // This method prints the adjacency list of all the vertices
void PrimMST(int *, int); // This function will perform the Prim's MST algorithm and optimize
// the number of nodes in the graph
};
#endif
/****************GRAPH.CPP*************************/
#include <iostream>
#include <climits>
#include <list>
#include <map>
#include "Graph.h"
#include "MinHeap.h"
#define INF 9999
using namespace std;
Graph::Graph(int v){
V = v;
adj = new list<AdjListNode>[V];
}
// This function takes in a pointer to array and its size as its arguments to create a hashtable.
// So. if you have 10,11,12,13,14,15 as the nodes.
// Create an array int arr[] {10,11,12,13,14,15}, and int size = sizeof(arr)/sizeof(arr[0])
// And pass it to this function this creates a dictionary named mapping for O(1) look up of
// index by other functions.
void Graph::HashTable(int *nodeData, int size){
for (int i = 0; i < size; i++){
mapping[nodeData[i]] = i;
}
return;
}
// This method returns the value corresponding to a particular node in constant time.
int Graph::getHashedElt(int data){
return mapping[data];
}
// This function creates an adjacency list for every vertex in the graph
void Graph::addEdge(int node1, int node2, int weight){
AdjListNode node(node2, weight);
int index = getHashedElt(node1);
adj[index].push_back(node);
}
void Graph::printGraph(){
list<AdjListNode>::iterator j;
int i = 0;
while (i<V){
for (j = adj[i].begin(); j != adj[i].end(); j++){
cout <<"(" << j->getV() << "," << j->getWeight() << ")->";
}
if (!adj[i].empty())
cout << "NULL\n";
i++;
}
}
void Graph::PrimMST(int *arr, int size){
MinHeap minHeap(arr,size);
size_t key[V]; // Key values to pick minimum weight edge in cut
for (int i = 1; i < V; i++){
parent[arr[i]] = -1; // All the parents are -1 initially
key[i] = INT_MAX; // Initially all the keys are initialised to positive infinity
MinHeapNode *newNode = minHeap.newMinHeapNode(arr[i],key[i]);
//cout << "("<< arr[i] << ", " << key[i] << ")\n";
minHeap.insertNode(i, newNode);
}
// Make key value of 0th vertex as 0 so that it is extracted first.
key[0] = 0;
// This function insertNode creates a newNode with vertex number and associated key value.
MinHeapNode *newNode = minHeap.newMinHeapNode(arr[0],key[0]);
minHeap.insertNode(0, newNode);
//minHeap.printHeap();
while (!minHeap.isEmpty()){
// Extract the vertex with minimum key value
minHeap.printHeap();
MinHeapNode *minNode = minHeap.extractMin();
// Get the vertex of this minNode.
int u = minNode->v;
cout << "\n";
minHeap.printHeap();
cout << "\n\n\n";
//cout << u << "\n";
// Traverse through all the adjacent vertices of u (extended vertex)
// and update their key values
list<AdjListNode>::iterator j;
for (j = adj[mapping[u]].begin(); j != adj[mapping[u]].end(); j++) {
int v = j->getV();
// If v is not yet included in the MST and weight of u-v
// is less than key value of v, then update key value
// and parent of v
if (minHeap.isInMinHeap(v) && j->getWeight() < key[mapping[v]]){
key[mapping[v]] = j->getWeight();
// cout << key[mapping[v]] << "\n";
parent[v] = u;
minHeap.decreaseKey(v,key[mapping[v]]);
}
}
}
for (int k = 1; k < size; k++){
//cout <<parent[arr[k]]<<"---"<<arr[k]<< "\n";
}
return;
}
/*************MINHEAP.H**************************/
#ifndef MINHEAP_H_
#define MINHEAP_H_
#include <map>
using namespace std;
struct MinHeapNode{
int v;
size_t key;
};
class MinHeap{
int size; // Number of heap nodes present in the heap at any given time
int capacity; // Capacity of min heap
map<int,int> pos; // This is map which stores the array index of a given vertex, for O(1) look up
MinHeapNode **MinHeapArray; // This array containe pointers to all the heap nodes.
public:
MinHeap(int*,int); // Class constructor, it will allocate space to minHeap and initialise all the variables.
// It also creates the map of every vertex to an index, so that there is O(1) look up.
MinHeapNode *newMinHeapNode(int,size_t); // This function creates a new min heap node with a given value of vertex and weight
int getIndex(int); // This function returns the index of a given vertex in pos map.
void insertNode(int,MinHeapNode *); // This function inserts a node into the MinHeapArray.
void printHeap();
void swapMinHeapNode(MinHeapNode **, MinHeapNode **); // It will perform swap operation in the heap.
void minHeapify(int); // Standard function to heapify at given idx.
bool isEmpty(); // A utility function to check whether given heap is empty or not.
bool isInMinHeap(int); // Checks whether given vertex in the heap or not
MinHeapNode *extractMin(); // Std func to extract to minimum node from the heap.
void decreaseKey(int,int); // This func performs the decreaseKey op by making use of pos map.
};
#endif
/***************MINHEAP.CPP***************************/
#include <iostream>
#include <cstdlib>
#include <climits>
#include <map>
#include "MinHeap.h"
using namespace std;
MinHeap::MinHeap(int *arr,int s){
size = 0;
capacity = s;
MinHeapArray = (MinHeapNode **)malloc(sizeof(MinHeapNode *)*s);
for (int i = 0; i < s; i++){
pos[arr[i]] = i; // This is a mapping from vertex to array index i. This will enable O(1) access of any var in heap.
}
}
MinHeapNode *MinHeap::newMinHeapNode(int v, size_t key){
MinHeapNode *node = new MinHeapNode;
node->v = v;
node->key = key;
return node;
}
int MinHeap::getIndex(int v){
return pos[v];
}
void MinHeap::insertNode(int idx, MinHeapNode *node){
MinHeapArray[idx] = node;
size++;
}
bool MinHeap::isEmpty(){
return size == 0;
}
bool MinHeap::isInMinHeap(int v){
if (pos[v] < size)
return true;
return false;
}
void MinHeap::printHeap(){
for (int i = 0; i < size; i++){
cout << MinHeapArray[i]->v << ", "<< MinHeapArray[i]->key << "\n";
}
}
void MinHeap::swapMinHeapNode(MinHeapNode **a, MinHeapNode **b){
MinHeapNode *t = *a;
*a = *b;
*b = t;
}
// A standard function to heapify at given index idx
// This function also updates position of nodes when they are swapped.
void MinHeap::minHeapify(int idx){
int smallest, left, right;
left = (2*idx + 1);
right = (2*idx + 2);
smallest = idx;
if (left < size && MinHeapArray[left]->key < MinHeapArray[smallest]->key)
smallest = left;
if (right < size && MinHeapArray[right]->key < MinHeapArray[smallest]->key)
smallest = right;
if (smallest != idx){
// To nodes to be swapped in min heap
MinHeapNode *smallestNode = MinHeapArray[smallest];
MinHeapNode *idxNode = MinHeapArray[idx];
// Change the mapping of vertices in pos map.
pos[smallestNode->v] = idx;
pos[idxNode->v] = smallest;
// Swap Nodes using swapMinHeapNode utility function
MinHeap::swapMinHeapNode(&smallestNode, &idxNode);
minHeapify(smallest);
}
return;
}
MinHeapNode *MinHeap::extractMin(){
if (isEmpty())
return NULL;
// Store the root node
MinHeapNode *root = MinHeapArray[0];
// Replace the root with last node
MinHeapNode *lastNode = MinHeapArray[size-1];
MinHeapArray[0] = lastNode;
// Update position of last node
pos[root->v] = size - 1;
pos[lastNode->v] = 0;
// Reduce heap size and heapify root
size--;
MinHeap::minHeapify(0);
return root;
}
void MinHeap::decreaseKey(int v, int key){
// Get the index of v in heap array
int i = pos[v];
// Get the node and update its key value
MinHeapArray[i]->key = key;
// Travel up till the complete tree is not heapified.
// This is O(logn) loop
while (i && MinHeapArray[i]->key < MinHeapArray[(i-1)/2]->key){
// Swap this node with its parent
// First update the pos matrix
pos[MinHeapArray[i]->v] = (i-1)/2;
pos[MinHeapArray[(i-1)/2]->v] = i;
// Do the swapping now.
MinHeap::swapMinHeapNode(&MinHeapArray[i], &MinHeapArray[(i-1)/2]);
// move to the parent index in the next iteration
i = (i - 1)/2;
}
return;
}
/**********************MAIN FUNCTION CALL***************/
#include <iostream>
#include "Graph.h"
#include "MinHeap.h"
using namespace std;
int main(){
int arr[] = {0,1,2,3,4,5,6,7,8}; // An array with all the vertices
int size = sizeof(arr)/sizeof(arr[0]);
Graph g(size);
g.HashTable(arr,size);
g.addEdge(0, 1, 4);
g.addEdge(0, 7, 8);
g.addEdge(1, 2, 8);
g.addEdge(1, 7, 11);
g.addEdge(2, 3, 7);
g.addEdge(2, 8, 2);
g.addEdge(2, 5, 4);
g.addEdge(3, 4, 9);
g.addEdge(3, 5, 14);
g.addEdge(4, 5, 10);
g.addEdge(5, 6, 2);
g.addEdge(6, 7, 1);
g.addEdge(6, 8, 6);
g.addEdge(7, 8, 7);
//g.printGraph();
g.PrimMST(arr,size);
return 0;
}
通过此输入,我得到错误的输出。请注意,通过在调用extractMin()之前和之后调用printHeap来获取此输出。并且可以看出,即使每次提取节点时在extractMin()中调用minHeapify(0)。它以某种方式不执行操作,因此堆没有堆积,导致错误的结果 样本输出,前3次迭代:
First Iteration:
0, 0
1, 2147483647
2, 2147483647
3, 2147483647
4, 2147483647
5, 2147483647
6, 2147483647
7, 2147483647
8, 2147483647
8, 2147483647
1, 2147483647
2, 2147483647
3, 2147483647
4, 2147483647
5, 2147483647
6, 2147483647
7, 214748364
Second Iteration:
1, 4
7, 8
2, 2147483647
8, 2147483647
4, 2147483647
5, 2147483647
6, 2147483647
3, 2147483647
3, 2147483647
7, 8
2, 2147483647
8, 2147483647
4, 2147483647
5, 2147483647
6, 2147483647
Third Iteration:
2, 8
7, 8
3, 2147483647
8, 2147483647
4, 2147483647
5, 2147483647
6, 2147483647
6, 2147483647
7, 8
3, 2147483647
8, 2147483647
4, 2147483647
5, 2147483647
请注意第二次和第三次迭代,尽管我最后在extractMin()函数中调用了minHeapify函数,但它们根本没有堆积。
我迫切需要帮助。
答案 0 :(得分:2)
你的问题出现在MinHeap::swapMinHeapNode(&smallestNode, &idxNode);
中的minHeapify(int idx)
这一行你交换指向不交换MinHeapArray
中的值的节点的指针你应该交换数组元素而不是此行应替换为MinHeap::swapMinHeapNode(&MinHeapArray[idx], &MinHeapArray[smallest]);