我想处理多个床文件以查找重叠区域。我将数据集作为数据框读取,如何有效地并行扫描两个数据集,以便检测重叠区域的位置。我的方法是每次我将数据帧对象的每个单元格的峰值区域作为查询,在intervaltree中取另一个数据帧的所有行的峰值区域,然后搜索重叠区域。我很困惑如何在R中实现这一点。请帮助处理生物信息学中的床格式文件。感谢有人指出我如何做到这一点......
这是我想要实现的简单例子:
[1] chr1 [10171, 10226] * | MACS_peak_1 7.12
[2] chr1 [32698, 33079] * | MACS_peak_2 13.92
[3] chr1 [34757, 34794] * | MACS_peak_3 6.08
[4] chr1 [37786, 37833] * | MACS_peak_4 2.44
[5] chr1 [38449, 38484] * | MACS_peak_5 3.61
[6] chr1 [38584, 38838] * | MACS_peak_6 4.12
..
..
[] chrX [155191467, 155191508] * | MACS_peak_77948 3.80
[] chrX [155192786, 155192821] * | MACS_peak_77949 3.71
[] chrX [155206352, 155206433] * | MACS_peak_77950 3.81
[] chrX [155238796, 155238831] * | MACS_peak_77951 3.81
[n-1] chrX [155246563, 155246616] * | MACS_peak_77952 2.44
[n] chrX [155258442, 155258491] * | MACS_peak_77953 5.08
#step 1: read two bed files in R:
bed_1 <- as(import.bed(bedFile_1), "GRanges")
bed_2 <- as(import.bed(bedFile_2), "GRanges")
bed_3 <- as(import.bed(bedFile_3), "GRanges")
step 2: extract first row of the bed_1 (only take one specific interval as query). each row is considered as one specific genomic interval
peak <- bed_1[1] # only take one row once
bed_2.intvl <- GenomicRanges::GIntervalTree(bed_2)
#step 3: find overlapped regions:
overlap <- GenomicRanges::findOverlaps(peak, bed_2.intvl)
# step 4: go back to original bed_2 and look at which interval were overlapped with peak that comes from bed_1, what's the significance of each of these interval that comes from bed_2.
# step 5: then iterate next interval from bed_1 to repeat above process
答案 0 :(得分:4)
library(rtracklayer)
bed1 = import("foo.bed")
bed2 = import("bar.bed")
然后查询'重叠';这对你来说意味着什么并不是很清楚,也许
bed1OverlappingBed2 = bed1[bed1 %over% bed2]
更灵活,findOverlaps(bed1, bed2)
。这种方法的后续问题应该直接提交给Bioconductor support forum。
假设我们输入了query
和subject
。找到所有的点击
hits <- findOverlaps(query, subject)
这会返回看起来像两列矩阵的内容。第一列是查询的索引,第二列是主题的索引。如果查询的第一个元素与主题的多个元素重叠,则会有几行1
在查询命中列下多次出现,与此范围重叠的主题的索引配对。取原始的范围集并“展开”它们以匹配命中,例如,
query[queryHits(hits)]
找到与
重叠的区域的交点pintersect(query[queryHits(hits)], subject[subjectHits(hits)])
这给了你元素方面的重叠,但是没有进行迭代就完成了。
通过一个小例子,这里有'chr1'的一些范围表示为GRanges
个对象(床文件也表示为GRanges,但附加mcols()
来自床文件的信息)。
query = GRanges("chr1", IRanges(c(10, 20, 30), width=5))
subject = GRanges("chr1", IRanges(c(10, 14), width=9))
他们看起来像
> query
GRanges object with 3 ranges and 0 metadata columns:
seqnames ranges strand
<Rle> <IRanges> <Rle>
[1] chr1 [10, 14] *
[2] chr1 [20, 24] *
[3] chr1 [30, 34] *
-------
seqinfo: 1 sequence from an unspecified genome; no seqlengths
> subject
GRanges object with 2 ranges and 0 metadata columns:
seqnames ranges strand
<Rle> <IRanges> <Rle>
[1] chr1 [10, 18] *
[2] chr1 [14, 22] *
-------
seqinfo: 1 sequence from an unspecified genome; no seqlengths
以下是点击次数:
> hits = findOverlaps(query, subject)
> hits
Hits object with 3 hits and 0 metadata columns:
queryHits subjectHits
<integer> <integer>
[1] 1 1
[2] 1 2
[3] 2 2
-------
queryLength: 3
subjectLength: 2
您可以看到第一个查询范围与主题的范围1和2重叠。这是交叉范围
> pintersect(query[queryHits(hits)], subject[subjectHits(hits)])
GRanges object with 3 ranges and 1 metadata column:
seqnames ranges strand | hit
<Rle> <IRanges> <Rle> | <logical>
[1] chr1 [10, 14] * | TRUE
[2] chr1 [14, 14] * | TRUE
[3] chr1 [20, 22] * | TRUE
-------
seqinfo: 1 sequence from an unspecified genome; no seqlengths
因此查询1和主题1从位置10到14重叠,查询1和主题2在位置14重叠,并且查询2和主题2在位置20到22重叠。(Bioconductor使用基于1的闭合间隔; UCSC使用基于0的半开间隔; rtracklayer::import.bed()
在导入文件时做正确的事。