改进(查询)性能

时间:2016-01-04 14:04:49

标签: php mysql performance

我有一个包含大量记录的数据库(n_building / n_residence表中有100个记录,而buildinggeo表中有数百万个记录)。这是数据库的简化版本:

Simplified Database Schema

这是导出到SQL时的样子:

CREATE TABLE IF NOT EXISTS `district` (
  `districtid` INT(20) NOT NULL COMMENT 'cbs_wijk_cd',
  `description` VARCHAR(255) NOT NULL COMMENT 'cbs_wijk_oms',
  `municipalityid` INT(20) NOT NULL COMMENT 'FK gemeente',
  PRIMARY KEY (`districtid`),
  INDEX `wijk_gemeente_fk` (`municipalityid` ASC),
  CONSTRAINT `fk_district_municipality`
    FOREIGN KEY (`municipalityid`)
    REFERENCES `municipality` (`municipalityid`)
    ON DELETE CASCADE
    ON UPDATE CASCADE)
ENGINE = InnoDB;

CREATE TABLE IF NOT EXISTS `neighborhood` (
  `neighborhoodid` INT(20) NOT NULL COMMENT 'cbs_buurt_cd',
  `description` VARCHAR(255) NOT NULL COMMENT 'cbs_buurt_oms',
  `districtid` INT(20) NOT NULL COMMENT 'FK wijk',
  `municipalityid` INT(20) NOT NULL COMMENT 'FK gemeente',
  PRIMARY KEY (`neighborhoodid`),
  INDEX `buurt_gemeente_fk` (`municipalityid` ASC),
  INDEX `buurt_wijk_fk` (`districtid` ASC),
  FULLTEXT INDEX `index_neighborhood_description` (`description` ASC),
  CONSTRAINT `fk_neighborhood_municipality`
    FOREIGN KEY (`municipalityid`)
    REFERENCES `municipality` (`municipalityid`)
    ON DELETE CASCADE
    ON UPDATE CASCADE,
  CONSTRAINT `fk_neighborhood_district`
    FOREIGN KEY (`districtid`)
    REFERENCES `district` (`districtid`)
    ON DELETE CASCADE
    ON UPDATE CASCADE)
ENGINE = InnoDB;

CREATE TABLE IF NOT EXISTS `n_building` (
  `buildingid` BIGINT(20) NOT NULL,
  `neighborhoodid` INT(10) NOT NULL,
  `constructionyear` INT(4) NOT NULL,
  `height` INT(3) NOT NULL DEFAULT 9,
  `multifamily` TINYINT(1) NOT NULL DEFAULT 0,
  PRIMARY KEY (`buildingid`),
  INDEX `fk_building_buurt_idx` (`neighborhoodid` ASC),
  INDEX `index_neighborhoodid_buildingid` (`neighborhoodid` ASC, `buildingid` ASC),
  CONSTRAINT `fk_building_neighborhood`
    FOREIGN KEY (`neighborhoodid`)
    REFERENCES `neighborhood` (`neighborhoodid`)
    ON DELETE CASCADE
    ON UPDATE CASCADE)
ENGINE = InnoDB;

CREATE TABLE IF NOT EXISTS `n_buildinggeo` (
  `buildingid` BIGINT(20) NOT NULL,
  `order` INT(5) NOT NULL,
  `lat` DECIMAL(11,8) NOT NULL,
  `lon` DECIMAL(11,8) NOT NULL,
  PRIMARY KEY (`buildingid`, `order`),
  CONSTRAINT `fk_buildinggeo_building`
    FOREIGN KEY (`buildingid`)
    REFERENCES `n_building` (`buildingid`)
    ON DELETE CASCADE
    ON UPDATE CASCADE)
ENGINE = InnoDB;

CREATE TABLE IF NOT EXISTS `n_residence` (
  `residenceid` BIGINT(20) NOT NULL,
  `buildingid` BIGINT(20) NOT NULL,
  `geolat` DECIMAL(11,8) NOT NULL,
  `geolon` DECIMAL(11,8) NOT NULL,
  PRIMARY KEY (`residenceid`),
  INDEX `fk_residence_building_idx` (`buildingid` ASC),
  INDEX `index_geoloat_geolon_residenceid` (`geolat` ASC, `geolon` ASC, `residenceid` ASC),
  INDEX `index_geolat` (`geolat` ASC),
  INDEX `index_geolon` (`geolon` ASC),
  CONSTRAINT `fk_residence_building`
    FOREIGN KEY (`buildingid`)
    REFERENCES `n_building` (`buildingid`)
    ON DELETE CASCADE
    ON UPDATE CASCADE)
ENGINE = InnoDB;

CREATE TABLE IF NOT EXISTS `n_vabidata` (
  `residenceid` BIGINT(20) NOT NULL,
  `index` FLOAT NULL COMMENT '  ',
  `indexdate` VARCHAR(25) NULL,
  `type` VARCHAR(100) NULL,
  `subtype` VARCHAR(150) NULL,
  `rooftype` VARCHAR(50) NULL,
  PRIMARY KEY (`residenceid`),
  CONSTRAINT `fk_vabidata_residence`
    FOREIGN KEY (`residenceid`)
    REFERENCES `n_residence` (`residenceid`)
    ON DELETE CASCADE
    ON UPDATE CASCADE)
ENGINE = InnoDB;

我的目标是创建此数据库某部分内容的JSON表示(这显然是匿名数据):

[
    {
        "buildingid": "632100000000000",
        "buurtid": "6320103",
        "constructionyear": "1969",
        "height": "9",
        "multifamily": "0",
        "gemeenteid": "632",
        "geo": [
            {
                "lat": "52.000",
                "lon": "4.000"
            },
            {
                "lat": "52.000",
                "lon": "4.000"
            },
            {
                "lat": "52.000",
                "lon": "4.000"
            },
            {
                "lat": "52.000",
                "lon": "4.000"
            },
            {
                "lat": "52.000",
                "lon": "4.000"
            }
        ],
        "res": [
            {
                "residenceid": "632010000000000",
                "surface": "159",
                "postalcode": "3400AA",
                "streetname": "Streetname",
                "housenumber": "00",
                "clusternr": "6320103533",
                "owner": "onbekend",
                "usageelec": "2463",
                "usagegas": "2006",
                "nomupd": "0",
                "cpwin": "0",
                "cpble": "0",
                "enet": "0",
                "gnet": "0",
                "type": null
            }
        ]
    }
]

有两种方法可以过滤数据库:通过邻域(所有建筑物等来自该社区)或通过边界框(所有建筑物等都在其中)。起初我以一种非常简单的方式决定:

$path2 = Config::Path(2);//minlat
$path3 = Config::Path(3);//minlon
$path4 = Config::Path(4);//maxlat
$path5 = Config::Path(5);//maxlon

if (($path2 && is_numeric($path2) && $path3 && is_numeric($path3) &&
     $path4 && is_numeric($path4) && $path5 && is_numeric($path5)) ||
        ($path2 == "district" && $path3 && is_numeric($path3))) {
    if ($path2 == "neighborhood") {
        $buildings = DBUtils::FetchQuery("
SELECT  b.`buildingid`, b.`neighborhoodid` AS buurtid, b.`constructionyear`,
        b.`height`, b.`multifamily`, n.`municipalityid` AS gemeenteid
    FROM  `neighborhood` n
    INNER JOIN  `n_building` b ON b.`neighborhoodid` = n.`neighborhoodid`
    INNER JOIN  `n_residence` r ON r.`buildingid` = b.`buildingid`
    WHERE  b.`neighborhoodid` = '$path3'
    GROUP BY  b.`buildingid`;
");
    } else {
        $buildings = DBUtils::FetchQuery("
SELECT  b.`buildingid`, b.`neighborhoodid` AS buurtid, b.`constructionyear`,
        b.`height`, b.`multifamily`, n.`municipalityid` AS gemeenteid
    FROM  `neighborhood` n
    INNER JOIN  `n_building` b ON b.`neighborhoodid` = n.`neighborhoodid`
    INNER JOIN  `n_residence` r ON r.`buildingid` = b.`buildingid`
    WHERE  r.`geolat` >= '$path2'
      AND  r.`geolon` >= '$path3'
      AND  r.`geolat` <= '$path4'
      AND  r.`geolon` <= '$path5'
    GROUP BY  b.`buildingid`;
");
    }

    if ($buildings && count($buildings) > 0) {
        for ($i = 0; $i < count($buildings); $i++) {
            $building = $buildings[$i];

            $buildinggeo = DBUtils::FetchQuery("
SELECT  bg.`lat`, bg.`lon`
    FROM  `n_buildinggeo` bg
    WHERE  bg.`buildingid` = '$building[buildingid]';
");

            if ($buildinggeo && count($buildinggeo) > 0) {
                $buildings[$i]['geo'] = $buildinggeo;

                $buildingresidences = DBUtils::FetchQuery("
SELECT  r.`residenceid`, r.`surface`, r.`postalcode`, r.`streetname`,
        r.`housenumber`, r.`clusternr`, r.`owner`, r.`usageelec`,
        r.`usagegas`, r.`nomupd`, r.`cpwin`, r.`cpble`, r.`enet`,
        r.`gnet`, v.`type`
    FROM  `n_residence` r
    LEFT OUTER JOIN  `n_vabidata` v ON r.`residenceid` = v.`residenceid`
    WHERE  r.`buildingid` = '$building[buildingid]';
");

                if ($buildingresidences && count($buildingresidences) > 0) {
                    $buildings[$i]['res'] = $buildingresidences;
                }
            }
        }

        echo json_encode($buildings);
    }
}

后来我决定在一个查询中获取所有建筑/住宅/ vabidata信息并从中创建所需的JSON结构,因为每个请求(> 5个建筑物)中的大部分时间都用于获取住宅数据。

$path2 = Config::Path(2);//minlat
$path3 = Config::Path(3);//minlon
$path4 = Config::Path(4);//maxlat
$path5 = Config::Path(5);//maxlon

if (($path2 && is_numeric($path2) && $path3 && is_numeric($path3) &&
     $path4 && is_numeric($path4) && $path5 && is_numeric($path5)) ||
         ($path2 == "district" && $path3 && is_numeric($path3))) {
    if ($path2 == "district") {
        $results = DBUtils::FetchQuery("
SELECT  b.`buildingid`, b.`neighborhoodid`, b.`constructionyear`,
        b.`height`, b.`multifamily`, n.`municipalityid`, r.`residenceid`,
        r.`surface`, r.`postalcode`, r.`streetname`, r.`housenumber`,
        r.`clusternr`, r.`owner`, r.`usageelec`, r.`usagegas`,
        r.`nomupd`, r.`cpwin`, r.`cpble`, r.`enet`, r.`gnet`,
        v.`type`
    FROM  `neighborhood` n
    INNER JOIN  `n_building` b ON b.`neighborhoodid` = n.`neighborhoodid`
    INNER JOIN  `n_residence` r ON r.`buildingid` = b.`buildingid`
    LEFT OUTER JOIN  `n_vabidata` v ON r.`residenceid` = v.`residenceid`
    WHERE  b.`neighborhoodid` = '$path3';
");
    } else {
        $results = DBUtils::FetchQuery("
SELECT  b.`buildingid`, b.`neighborhoodid`, b.`constructionyear`,
        b.`height`, b.`multifamily`, n.`municipalityid`, r.`residenceid`,
        r.`surface`, r.`postalcode`, r.`streetname`, r.`housenumber`,
        r.`clusternr`, r.`owner`, r.`usageelec`, r.`usagegas`,
        r.`nomupd`, r.`cpwin`, r.`cpble`, r.`enet`, r.`gnet`,
        v.`type`
    FROM  `neighborhood` n
    INNER JOIN  `n_building` b ON b.`neighborhoodid` = n.`neighborhoodid`
    INNER JOIN  `n_residence` r ON r.`buildingid` = b.`buildingid`
    LEFT OUTER JOIN  `n_vabidata` v ON r.`residenceid` = v.`residenceid`
    WHERE  r.`geolat` >= '$path2'
      AND  r.`geolon` >= '$path3'
      AND  r.`geolat` <= '$path4'
      AND  r.`geolon` <= '$path5';
");
    }

    if ($results && count($results) > 0) {
        $buildings = array();

        for ($i = 0; $i < count($results); $i++) {
            $b = $results[$i];

            if (!array_key_exists($b['buildingid'],$buildings)) {
                $buildings[$b['buildingid']] = array(
                    "buildingid"        => $b['buildingid'],
                    "buurtid"           => $b['neighborhoodid'],
                    "constructionyear"  => $b['constructionyear'],
                    "height"            => $b['height'],
                    "multifamily"       => $b['multifamily'],
                    "gemeenteid"        => $b['municipalityid'],
                    "res"               => array()
                );
            }

            $buildings[$b['buildingid']]['res'][] = array(
                "residenceid"   => $b['residenceid'],
                "surface"       => $b['surface'],
                "postalcode"    => $b['postalcode'],
                "streetname"    => $b['streetname'],
                "housenumber"   => $b['housenumber'],
                "clusternr"     => $b['clusternr'],
                "owner"         => $b['owner'],
                "usageelec"     => $b['usageelec'],
                "usagegas"      => $b['usagegas'],
                "nomupd"        => $b['nomupd'],
                "cpwin"         => $b['cpwin'],
                "cpble"         => $b['cpble'],
                "enet"          => $b['enet'],
                "gnet"          => $b['gnet'],
                "type"          => $b['type']
            );
        }

        $buildings = array_values($buildings);

        for ($i = 0; $i < count($buildings); $i++) {
            $building = $buildings[$i];

            $buildinggeo = DBUtils::FetchQuery("
SELECT  bg.`lat`, bg.`lon`
    FROM  `n_buildinggeo` bg
    WHERE  bg.`buildingid` = '$building[buildingid]';
");

            if ($buildinggeo && count($buildinggeo) > 0) {
                $buildings[$i]['geo'] = $buildinggeo;
            }
        }

        echo json_encode($buildings);
    }
}

然而,这种方法似乎比以前慢了30-70%。我的问题是:你们中的任何人都可以找到原因(可能还有解决方案)为什么这两个查询的表现都和它们一样糟糕?如果您有任何疑问或需要任何其他信息,请询问。

修改

这是EXPLAIN对第二个查询(一体化)的边界框版本的结果:

EXPAIN result

1 个答案:

答案 0 :(得分:2)

WHERE  b.`neighborhoodid` = '$path3'
GROUP BY  b.`buildingid`

b需要INDEX(neighborhoodid, buildingid) - 按此顺序
r需要INDEX(buildingid)
r需要INDEX(lat, lon, residenceid) - 按此顺序

(请提供SHOW CREATE TABLE,以便我们查看您拥有的索引。)

WHERE  r.`geolat` >= '$path2'
  AND  r.`geolon` >= '$path3'
  AND  r.`geolat` <= '$path4'
  AND  r.`geolon` <= '$path5'

无法根据情况进行优化。有关如何通过lat / lon处理大型搜索,请参阅application